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Abstract. A nonseparable optimization problem was used to compare the computational efficiency
of iterative dynamic programming (IDP) to direct search optimization. As the number of stages was

increased, it was found that the advantages of IDP become more remarkable. To solve a 100-stage
problem with 3 state variables and 3 control variables is much more efficient by the use of IDP than

by direct search optimization.
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1. INTRODUCTION

The requirements of low dimensionality and separability of the optimization
problem have limited the use of dynamic programming to solving only simple
optimal control problems [']. However, by using dynamic programming in an

iterative manner, Liiiis [2_4] showed that the dimensionality problem can be

overcome. In fact, the iterative dynamic programming (IDP) has been used

successfully for establishing optimal control of a system described by 250

differential equations with 250 control variables [3], and for solving highly
nonlinear systems encountered by chemical engineers DP]. Recently Lüüs and

Tassone [6] showed that IDP can also be used successfully on the nonseparable
problems studied by Li and Haimes [’] through the use of the best available values

from the previous iteration for the required variables. On a higher dimensional
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problem, they showed that IDP is computationally equivalent to the direct search

optimization method of Liilis and Jaakola [B].
The purpose of this paper is to compare IDP to the direct search optimization

procedure in solving the 3-dimensional nonseparable example used by Liiiis and

Tassone [®]. Of special interest is to investigate how these optimization
procedures compare when the number of stages becomes very large.

2. OPTIMIZATIONPROBLEM

The problem we consider here is the system described by three nonlinear

difference equations
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where x is the state vector of dimension 3, k is the index pertaining to the stage
number, u 1s the control vector of dimension 3, with the initial condition

x0) =125 71"
The control variables are constrained by

o<u (k)<4,

0<uy(k) <4,
0 <u,(k) <0.5.

The performance index / to be minimized is
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where P is the number of stages. Liiiis and Tassone [6] chose P = 20. Here, we will

also investigate the cases when P = 50 and P = 100.

3. RESULTS

All computations were carried out in double precision on Pentium/166 PC,

using the WATCOM FORTRAN compiler, version 9.5. For computations based

on IDP, we took a single grid point and chose the candidates for the control

variables at random inside the admissible region. The initial region size for every

run was taken to be >Ö = [4 4 O.S]T, and the initial control policy was taken as

u® = 2 2 0.25]T at each stage. For IDP, we used a multipass method, each

consisting of 30 iterations. After every iteration, the region was contracted by an

amount y = 0.85, and after every pass, the region was restored to n = 0.5 of its

value at the beginning of the previous pass. In using direct search based on region
contraction [B], we used the same starting conditions, but a region contraction

factor of 0.95, which has been found to be a reasonable value for very complex
systems [9]. The number of iterations was set at 201, but the number of search

points was varied. For the cases P = 50 and P = 100, we used the direct search

method in a multi-pass fashion to reduce computation time.

Case I: P=2o

As expected, as the number of random points is increased, the answer obtained

by direct search optimization is improved. As Table 1 shows, more than 2000

random points per iteration are required to obtain the optimum to five figures. The

computation time of 81 s on the Pentium/166 PC for 3000 points per iteration is

quite reasonable. Therefore, the use of direct search optimization for this problem
with 20 stages (a total of60 variables) appears to be quite satisfactory.

No. of random points per Performance index / Computation time, s

100 209.41 2.8

500 209.29 13.6

1000 209.28 27.0

2000 209.28 54.0

3000 209.27 80.9

5000 209.27 134.9

10000 209.27 269.6

Table 1

Values ofthe performance index obtained by direct search optimization with P = 20
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In solving this problem with IDP, we took a single grid point and allowed

5 passes of 30 iterations, each as described above. The convergence was very

rapid, and computationally, the results were obtained considerably faster than

with the use of the optimization by Liiiis and Jaakola Nl Although there are three

control variables, the use of only three allowable values for control gives
convergence to the optimum /= 209.27 in less than one second of computation
time. The convergence to the optimum is not monotonic, as shown in Fig. 1,
where the oscillatory nature of convergence is observed. Since a log scale is used,
the oscillations during the fifth pass appear to be very large, whereas in actual

terms, they are quite small. As Fig. 2 shows, when 25 randomly chosen values for

control are used instead of 3, there is more rapid approach to the origin in the first

pass, but the endresult after 5 passes is approximately the same. It is interesting to

note that, in each case, a better value for the performance index was obtained at

the end of the fourth pass (as seen from the starting point for the fifth pass) than at

the end of the fifth pass. Thecomputation time for 5 passes with R = 25 allowable

values for control was 2.7 s, where R is the number of randomly chosen

candidates for control.

Fig. 1. Deviation from the optimum / = 209.2693696 with R = 3 as a function of iteration number

000 first pass, +++ fifth pass.
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Case 2: P =SO

The use of 50 stages presents a challenge for the direct search optimization,
because we are faced with a 150-dimensional optimization problem. As shown in

Table 2, a large number of points must be used with direct search optimization to

obtain an answer close to the optimum, if a single pass optimization procedure is

used. The use of 500,000 points per iteration required almost 10h of computation
time. The computation time can be reduced quite significantly, however, by using
a multipass method, employing a smaller number of random points per iteration,
but restoring the region size to a fraction n of the value used in the previous pass.
Table 3 shows the results of such procedure, using 20 passes with y = 0.99 and

N = 0.60. In these runs, 201 iterations were used in each pass. As can be seen, the

optimum / = 240.92 was obtained with only 400 points per iteration in less than 10

min of computation time. Such a multi-pass procedure was used by Liiiis et al. [
in solving a cancer chemotherapy problem involving 84 variables.

However, with IDP, the optimum is obtained much more easily, since a three-

dimensional problem is solved repeatedly from stage to stage, and we are not

faced with a 150 dimensional search problem. By using R = 3 allowable values for

control, we obtained the optimum / = 240.92 in only 2.5 s. Therefore, IDP

Fig. 2. Deviation from the optimum / = 209.2693696 with R = 25 as a function of iteration number;
000 first pass, +++» fifth pass.
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becomes considerably more attractive than direct search optimization when the

number of stages is large.

Case 3: P =lOO

When P = 100 was used, the multi-pass direct search optimization procedure
required the use of 5000 points per iteration to yield the optimum / = 258.34. The

computation time was almost 4 h, as shown in Table 4. The same value of 7 was

obtained with the use of IDP with R = 3 allowable values of control, requiring
only 7 s of computation time for 5 passes. Figure 3 shows the computational
advantage of IDP over the direct search optimization for this problem. From the

slopes of the curves, we note that with IDP the rate of increase in computation
time, as the number of stages is increased, is considerably smaller than with direct

search optimization.

No. of random points per Computation time, s

iteration

100 244.72 6.9

500 242.61 344

1000 241.66 68.9

2000 241.43 137.2

5000 241.14 342.8

10000 241.02 685.2

20000 240.98 1370.7

50000 240.94 3426.3

100000 240.93 6835.7

200000 240.93 13707.8

500000 240.92 342704

Table 2

Values of the performance index with P = 50, obtained by directsearch optimization, using a

single pass of 201 iterations with y= 0.95

No. of random points per Performance index / Computation time, s

100 240.94 139.0

200 240.93 2717.2

300 240.93 4154

400 240.92 553.7

500 240.92 692.2

Table 3

Use of 20-pass method for direct search optimization, each pass consisting of 201 iterations;
y=0.99, 7 = 0.60
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Fig. 3. Computation time as a function ofthe number of stages; ®®® direct search optimization, AAA

IDP with R = 25, ¢¢¢ IDP with R = 3.

No. of random points per Computation time, s

iteration

100 258.42 290.3

200 258.38 578.8

300 258.36 867.6

400 258.36 1156.6

500 258.36 1445.8

600 258.35 17344

800 258.35 23125

1000 258.35 2890.3

2000 258.35 5676.3

3000 258.35 8514.8

4000 258.35 113524

5000 258.34 14190.3

Table 4

Use of 20-pass method for directsearch optimization with P = 100, with each pass consisting of

201 iterations; y = 0.99, 1 = 0.60
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4. DISCUSSION AND CONCLUSIONS

Since IDP is considerably faster than direct search optimization in establishing
the optimal control of systems with a large number of stages, it is worthwhile to

try that method even when the problem is nonseparable. At present, it is not quite
clear how IDP can be used effectively for complex recycle systems, since the

recycle stream at the outlet must be equal to the recycle stream at the inlet. One

possible approach to force this equality is to use penalty functions. Research in

this area is continuing. In general, however, to use values that have been

calculated from the previous iteration for those that are not available at the current

iteration appears to work very well for many nonseparable problems.
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ITERATIIVSE DÜNAAMILISE PLANEERIMISE RAKENDAMINE

MITTEERALDATAVATE ULESANNETE OPTIMAALSEKS

JUHTIMISEKS

Rein LUUS

Iteratiivse diinaamilise planeerimise arvutusliku efektiivsuse vordlemiseks

otsese otsimisega optimeerimisprotseduuriga on vaadeldud mitteeraldatavat

optimeerimisiilesannet. On nididatud, et meetodi eelis on mérkimisvéérne siisteemi

olekute arvu suurenemisel. Nii on 100-etapilise iilesande lahendamine kolme

olekumuutuja ja kolme juhtmuutuja korral palju efektiivsem iteratiivse diinaa-

milise planeerimise abil.
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