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Abstract. This paper considers an elastic double-spiral strip of constant or piecewise constant

thickness. One end of this strip is rigidly clamped and the other is loaded by force. Using the Finite

Element Method Program ANSYS 5.0A, the paper studies the dependence of displacements, the

maximum of the von Mises stress and the angle (cutting angle) between tangent on the strip’s loaded

end and the opposite direction of the force on the geometrical parameters of the strip. By the optimal
design technique of ANSYS 5.0 A, the piecewise constant distribution of strip thickness, which

minimizes its volume, has been found. The von Mises stress, displacements and the cutting angle for

the strip of constant thickness and for that of piecewise constant thickness of the minimum volume

were compared. The results of the present paper can be used for seedbed cultivator s-tines.
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1. INTRODUCTION

The elastic curved strip can model a seedbed cultivator s-tine [l]. Ten variants

of s-tine finite element models, the shazpe of which is determined by seven

parameters (Fig. 1) have been studied in [“]. In the present paper, we consider an

elastic double-spiral strip, which can also model the s-tine. The shape of this strip
is determined only by two parameters.

The properties of s-tines may be determined by natural experiments P].
Unfortunately, natural experiments are expensive and time consuming. Modern

computer software and hardware allow us to make experiments with the finite

element models of real s-tines. Computer experiments are much cheaper and

quicker than natural experiments. Natural experiments may be required to

establish the connection between the properties of the real s-tine and its finite

element model.

https://doi.org/10.3176/eng.1997.3.04

https://doi.org/10.3176/eng.1997.3.04


186

The method of computer experiments with the s-tine finite element model is

used in [']. We use the same method in this paper.

2. GEOMETRY OF THE DOUBLE-SPIRAL STRIP

Let us consider two arcs of spirals determined by the formulas

¢ ¢

jp @), — y-2 0),
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Pb*cos(w) y= -b cos (W)
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$

where a, b, and s are the parameters of double-spiral arcs, and

atan[ln(a)] £ ¢ <atan[ln(a)] + 2=, atan[ln(b)] <w <2n

For

a = 1.06,b = 1.25,s= 12

the geometric representation of arcs (1) (continuous line) and (2) (dot line) are

shown in Fig. 2. By a simple transformation, the arcs (1), (2) are joined into one

double-spiral arc. This arc is shown in Fig. 3 for numerical values (3). On the

basis of the double-spiral arc, the double-spiral strip is constructed. For the values

(3), the finite element model of the strip of the width d =0.032 m is shown in

Fig. 4. We assume that one end of this strip is rigidly clamped, and the other one is

loaded by force (Fig. 4) on the nodes.

Fig. 1. Shape parameters of the s-tine.

(1)

(2)

(3)
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Let us consider two sets of double-spiral arcs and the corresponding strips. The

first set of arcs is shown in Fig. SA, where the parameters a and b have the values:

a;=1.02; 1.06; 1.10; 1.14; 1.18; 1.22 and b =1.25. The second set of arcs is

shown in Fig. 58, where the parameters a and b have the values a = 1.02 and

b;=1.25; 1.27; 1.29; 1.31; 1.33; 1.35. (An increment in the parameters a or b

results in the increased dimensions of the double-spiral strip.)

Fig. 2. Initial spiral arcs Fig. 3. The double-spiral arc.

Fig. 4. Force loading and constraints of the double-spiral strip.
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Because the double-spiral strip is used as a model for seedbed cultivator s-tine,
we studied also the dependence of the cutting angle o (Fig. 1) on the values of the

applied force and strip parameters a and b. The value of the cutting angle o

before loading the strip by the force can be computed by the formula o 0 = In(b).
We divided the strip into eight regions, where the thickness of the strip may be

different. These regions are shown in Fig. 6.

Fig. 5. Sets of double-spiral arcs

Fig. 6. Regions of the double-spiral strip. Fig. 7. The element coordinate systems for the

finite element model of the double-spiral strip.
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To determine the top and bottom surfaces of the strip, the coordinate systems
of the elements are needed. In Fig. 7, the set of short lines, perpendicular to the

double-spiral arc, is shown. These lines are the z axes of the coordinate systems of

the elements. The positive direction of this z axis is from the bottom to the top
surface of the strip.

3. ESTIMATION OF THE STRESS STATE OF THE DOUBLE-SPIRAL

STRIP

To estimate the stress state of the double-spiral strip, we use the von Mises

stress, determined by the equation

G—i—f(Gl—G)+G—G + -02 (2 3)„/ (o
2

3 1)9

where 0,, 0,, 05 are principal stresses.

For numerical calculations in this paper we take always E =2OO GPa (Young’s
modulus) and v = 0.3 (Poisson’s coefficient). The distribution of the von Mises

stress on the strip top surface (Fig. 7), under the load F =2OO N in the direction of

the global coordinate axis Y (Fig. 4), is shown inFig. BA. Here, the strips have equal
thickness h=o.ol m in all eight regions (Fig. 6) for the values of (3) and

d=0.032 m. To decrease the maximum of the von Mises stress in the strip, the

thickness of strip in the regions 2 and 3 (Fig. 6) is increased and taken 4 = 0.012 m.

In this case, the von Mises stress distribution on the strip top surface is shown in Fig.
88. Comparing Figs. 8A and 8B we can see that increasing the strip thickness in

regions 2 and 3 decreased and removed the maximum of the von Mises stress.

Fig. 8. Distribution of the von Mises stress on the top surface of the double-spiral strip.
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4. RESULTS OF COMPUTER EXPERIMENTS

Let us consider the results of computer experiments with the strip finite

element model, shown in Fig. 88. In the computer experiments, we studied the

dependence of displacements uX, uY (ANSYS 5.0 A symbols [4'7]) in the

directions of global axes X and Y, the maximum value of the von Mises stress and

the cutting angle o on the values of the total force F' and parameters a and b. The

experimental values of these parameters are denoted in Figs. 9-12 by different

symbols, which for clarity are joined by straight lines. The index numbers 1,2, 3,
and 4 denote the values 200, 400, 600, and 700 N of the total load F. For all cases,

s = 12. Figures 10A and 12A can be used to choose strip material for seedbed

cultivator s-tines. Figures 9—12 help to choose seedbed cultivator s-tines in regard
to agricultural technology.

Fig. 9. Dependence of the displacements on the parameter @, b = 1.25. A: trace 1 — uY, ,
trace 2 -

i

uY2., trace 3 — uY3 ,
trace 4 - uY4 ; B:trace 1 — uX, , trace 2 - uX2., trace 3 — uX3., trace 4 —

t i l l I 1

uX
4
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Fig. 10. Dependence of the maximum of the von Mises stress and the cutting angle on the

parameter a, b = 1.25. A: trace ] —o, ,trace 2 -o,, trace 3 - Oy , trace 4 — Oy s B: trace 1 —

L I I n

a,i ,
trace 2 — azi ,

trace 3 — a3i , trace 4 -- oc4i.

Fig. 11. Dependence of the displacements on the parameter b, a = 1.02. A: trace 1 — uY, , trace 2 -

i

uYz. , trace 3 — uY3. , trace 4 — uY4' ; B: trace 1 — uX, , trace 2 - uX2_ ,
trace 3 — uX3. ,

trace 4 —

i ! t t i i

uX, .
4;



h;=001m(i=1,2,..,8). (5)
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5. STATEMENT OF THE OPTIMIZATION PROBLEM

The objective is to minimize the volume of the strip

V = V(hy, hy, hs, hy, hs, hg, hy, hg)

subject to

(h;sh,Sh; ) (i=1,2,..,8)

G*Smax(o)š.o".

The solution of the stated problem was obtained by the design optimization
technique [*7] of the Finite Element Method Program ANSYS 5.0A.

The following values of fixed parameters were used in the computations

h; = 0.001 m,h, =ool2m, 6 =0.05 GPa, ¢ = 0.5 GPa, F=2OON,

a=1.06,b=1.25,55=12,d=0.032 m.

For design variables, the following initial values were given

Fig. 12. Dependence of the maximum of the von Mises stress and the cutting angle on the

parameter b, a = 1.02. A: trace 1— o, ,trace 2 -o, ,lrace 3- Oy trace 4— Oy ;B:trace 1- o
i i “i i i

trace 2 — azl_ , trace 3 — oc3i , trace 4— a4i ,

4)
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For the values (5) of the design parameters, the initial values are

V = 441 cm? for the objective function and the state variable max(6 ) = 0.274 GPa

were computed. Note that the initial value for max(6) satisfies the required
constraints (4).

The ANSYS 5.0 A optimization process converged to the possible optimum
after 125 iterations. The computed optimal values of design variables are

h, =0.0094 m, h, = 0.0098 m, A 3 =0.0106 m, A 4 = 0.0088 m,

hs =0.0084 m, hg = 0.0079 m, h; = 0.0070 m, hg = 0.0048 m.

The optimal value of the objective function V is 357 cm*. The value max(o) =

0.315 GPa of the optimal strip state variable satisfies the reguired constraints (4).
Note that the optimal value V is 20% less than the initial value. Under the

restrictions (1), the value of max(o6) for the optimal values (6) of the design
variables are 10% greater than the initial values.

The von Mises stress distribution on the top surface of the strip is shown in

Fig. 13 at the initial (A) and optimal (B) states. From Fig. 13, one can conclude

that these distributions are quite different.

Interestingly, the strip of the minimal volume is “equi-strength”, because the

maximum of the von Mises stress arises simultaneously at all the regions
considered (Fig. 13B).

Fig. 13. Distribution of the von Mises stress at the top surface of the double-spiral strip in the initial

(A) and optimal (B) state.

(6)
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6. RESULTS OF COMPUTER EXPERIMENTS ON THE INITIAL AND

OPTIMAL STATES OF THE STRIP

Let us compare the results of computer experiments for the initial and optimal
distribution of strip thickness under the force values F = 100, 300, 400, ...,

700 N.

The dependence of displacements in the directions of global axes X and Y, the

maximum value of the von Mises stress and the cutting angle on the values of the

total force F are shown in Figs. 14 and 15. In these figures, the computed
numerical values are denoted by different symbols, which for clarity are joined by
straight lines. From Fig. 15 one can conclude that with the increase of the force

value, the von Mises stress increases for the optimal strip quicker than for the

initial strip. Figures 14 and 158 show that the flexibility of optimal strip is

considerably greater than that of the initial strip. The flexibility is one of the most

important characteristics of the seedbed cultivator s-tine.

Fig. 14. Comparison of the displacements at the optimal (box) and initial (diamond) distribution of

strip thickness. A: trace 1 — qu. ,trace 2 - uY, ; B:trace 1 - uX,., trace 2 - uX, .
i i

Fig. 15. Comparison of the von Mises stress maxima and the cutting angle at the optimal (box) and

initial (diamond) distribution ofstrip thickness. A: trace 1— G; trace 2 - jl.i B: trace ]—o, , trace

l
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Using the ANSYS 5.0 A optimization technique [*7], we have found the

values for design variables, which guarantee the local minimum for the objective
function by the redistribution of the stress. One can try to find the other local

minimum for the objective function of the new initial values of design variables.
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LOKAALSE KOORMUSE ALL OLEVA ELASTSE

KAKSIKSPIRAALRIBA UURIMINE

Mati HEINLOO ja Margus KULASALU

On vaadeldud kahest spiraalikaarest moodustatud kaksikspiraali baasil loodud

elastset riba, mis on iihtlasi lauskultivaatori s-pii mudel. Kaksikspiraalriba iiks ots

on jdigalt kinnitatud ning teise otsa on rakendatud joud. Tarkvarapaketi ANSYS

5.0 A abil on uuritud selle riba 16plike elementide mudeli siirete, maksimaalsete

Misese pingete ja s-pii puhul tuntud nn. 16ikenurga soltuvust kahest kaksikspiraali
kuju méddravast parameetrist. Kasutades sama arvutipaketi optimeerimistehnikat
on leitud tiikati konstantne paksuse jaotus, mis tagab riba minimaalse ruumala.

Misese pinged saavutavad maksimaalviirtuse korraga kaheksas riba etteantud

piirkonnas iiletamata materjali voolavuspiiri. Minimaalse ruumalaga tiikati

konstantse paksusega riba mehaanilised omadused erinevad oluliselt konstantse

paksusega riba analoogsetest omadustest.
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