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Abstract. This research involves the unsteady process of vortex ring development in an unbounded

viscous fluid. Earlier studies resulted in the linear solution of the Navier—Stokes equations valid for

a low Reynolds number in the form of vorticity distribution. In this paper, a new integral expression
for streamfunction is derived, and the time-dependent properties of a viscous vortex ring are

obtained. A new expression is found for the translation velocity of the ring, which agrees both with

the long-time asymptotic drift velocity and the Saffman result for rings with small cross-sections.

The result is compared with the experimental data and with the obtained velocity of the trajectory of

maximum vorticity.
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1. INTRODUCTION

Vortex rings are implemented in underwater drilling and modelling the

downburst. In addition, they are of great practical interest to aeronautical

engineers. Theirproperties have been studied for over a century. In ['] Shariff and

Leonard sum up numerous theoretical and experimental results.

In particular, it can be noted that vortex rings pass through the formation and

the post-formation stages during their development. In the post-formation stage,
the impact of initial conditions vanishes, and the vortex ring is translated due to its

own induced velocity. To achieve a comprehensive description of the post-
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formation stage, it is necessary to find the time-dependent vorticity distribution

and the corresponding streamfunction, which are solutions of the Navier—Stokes

equations, and to define the time-dependent properties of this kind of flow motion.

However, the most important theoretical results obtained have described only the

initial and final phases of this stage. To describe the initial motion of a vortex ring
in the post-formation stage, a circular line vortex or the Gaussian distribution of

vorticity is commonly used [2]. Saffman [3] described an extension of the

expression for the velocity of the vortex ring in an ideal fluid with an arbitrary
distribution of vorticity to the viscous case. On these bases, using the Gaussian

distribution of vorticity, he obtained the velocity for a vortex ring with a small

cross-section, which can be considered the velocity of the ring for an early stage
of its evolution. In [4’s] the problem of the velocity definition of the ring was

investigated, considering the dynamics in the potential flow region that surrounds

the vortical domain. The expression for the ring’s translation velocity derived by
such a method was close to the result []. By using this expression and the

vorticity distribution for the final self-similar phase of the ring’s evolution [6], the

asymptotic drift velocity of the vortex ring was found. Kambe and Oshima [”]
made an attempt to generalize the self-similar vorticity distribution to a wider

range of time variation. They took into account the second-order effects of the

non-linear convective terms of the vorticity equation and obtained new unsteady
vorticity distributions. But these distributions have no uniform validity. Hence,
the Phillips’ vorticity distributions and the streamfunction [°] have remained the

sole example of the solution of the Navier—Stokes equations with the conservation

of the total impulse for the problem of a viscous vortex ring [%]. The linear

solution for this problem, which conserves the total impulse, was proposed in the

form of vorticity distribution in [9’lo]. Later, this solution was treated as the first

order term of expansion in the powers of the Reynolds number ['l. However, the

complete description of the evolution of the vortex ring by the use of this solution

was not achieved because the corresponding streamfunction was not derived and

the important properties, like the ring’s translation velocity, were not found. The

main goal of this study is to obtain these quantities.
The next section describes the problem and its linear solution in the form of

vorticity distribution. In the third and fourth sections, new expressions for the

corresponding streamfunction and for the ring’s time-dependent properties are

derived. Results are discussed in the fifth section.

2. LINEAR SOLUTION OF THE NAVIER-STOKES EQUATIONS

The flow is assumed to be axisymmetric with the constant density p and

viscosity v. We use ¢ to denote the vorticity. The behaviour of a vortex ring in an

incompressible fluid is described by the evolution equation ['?]
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which corresponds to the axisymmetric problem; x, r are the axes of a cylindrical
coordinate system and 7 is time.

The Stokes streamfunction ¥ can be introduced as follows:

IYy, v =-19¥
“ rar+U(t)’v rox

Here U(t) is the velocity of the frame moving with the vortex ring given by

de(t)
U(t) = e where xo(1) is the distance, which the vortex ring passes from

the initial moment #,. To employ equations (2), we assume that the vortex ring

moves as a whole and does not shed the impulse into its wake.

The vorticity is related to the streamfunction ¥ by the equation

—a—z—lg-*-õ—z;ll—la;ll
= -—rg_

Br2 ax2 ror

Boundary conditions follow from the symmetry about the x axis and the decay of

¥, ¢ at the infinity

(i) ¥(o.x) = ¢(o,x) = 0

Gi) W, c— 0, (x* +R
Integration of (1) under the boundary condition provides the conservation for the

impulse:

I = npj- J rzgdxdr
—OO

By introducing the dimensionless variables

r x—xO(t) Ry Y
c=o n=2— I=—2 o=-—, S

L L L 2 ¢
SoL 0

-0 ]
6p = A(M, v, Ro)! ,Mzõ,
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where R is initial radius of the vortex ring, we can obtain the corresponding
equation of vorticity in the form

00 d)0 d)0 õ( 1099 ) d /19D
—2OO - -n O 99 pel 2 (_lO9 9 [loo%% m ” e[õc son® +Bn(oaom)]

82a) 82c0 100 ©

96 on °°
6

where Re = gOLz/v. In [“] solution of (8) was found for small Reynolds
numbers in the form of asymptotic expansions

o(o,n, T;Re) = ml(o,n,'c)+Reo)2(c,n, T)+...,

P(6,n, t;Re) = <Dl(o,n, T) +Re<l>2(o,n, T)+
...,

which are valid as Re — 0 for fixed o, 1, T. The first order term was obtained as

follows:

O, = exp(—%(c2 +n2 + 12))11(01)
where the values of o and Re were given by the following expressions

cz AM — '"L M M
Os,

— —

,

(41Wt)3/2RO 2(7W)3/2(t)1/2R0 21/2(n)3/2vR(2)

I, denotes the first-order modified Bessel function of the first kind. The direct

substitution of (10) in (6) shows that the obtained solution fulfils the conditions of

the total impulse conservation. All the results obtained below have the same range

of validity as the solution (10) obtained earlier. Furthermore, this allows for

formal description of the motion of the starting ring when the initial Reynolds
number is very small (initial Reynolds number can be introduced as

M ‘o
AD

ReO =

7 = see below expression (18)). Subscript 1 is omitted below.

TR,V

3.FIELD OF THE STREAMFUNCTION

According to the vorticity distribution (10), the field of the streamfunction ¥

from the Poisson integral solution is given by Batchelor ['?] as

(8)

(9)

(10)

ey
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where p 2 = (n—nl) +(O'1) +O'2—2o'O'lCoB9
.

However, it is possible to simplify the calculation of ¥ in our case by

applying the method of the integral transforms. The usefulness of this method for

the problem considered was shown in [’]. TheFourier—Hankel integral transforms

of the vorticity @ from (10) and of the function f = qš from the eguation (3) are

2+ 2

® = exp(—u——zl)Jl(Tu)
2 2

= exp(—“———;a )
f = 77777n)

u +oa

where J; denotes the first-order Bessel function.
L

Using the inverse Fourier—Hankel integral transform for f ,
we obtain Y as

follows:

_uz_az2goL3o°°°°uexp(———2)
W= ———-jj————] (tn)J, (opn)cos(on)dudo172 2 2 1 1

(2m) u +0
nna

The integration with respect to o presented in ™ gives

° 2

mexp(T) nexp(%)j—z—zcos(an)da laF(u, n)

u +a

0

H-1n H+n
where F(u,m) = exp( nu(l erf( 7)) +exp(nu(l erf( 7))
and erf (z) is the error function.

Thus we have the expression for ¥ in the form of a single integral instead of

the triple integral (12) as

(12)

(13)

(14)

(15)
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Mo
¥ = M)_[F(u,n)ll(ru)fl(cu)du

Õ

and the two velocity components in the dimensionless form inside the moving
vortex ring will become

v, = - šš—f = - % {u{exp(—nu)(erf(‘%‘)— 1)

+ exp(nu)(l—erf(%))bl(wwl(ou)du ,

u = 199 = -2% TuzF(u,n)Jl(w)Jo(ou)du .
0

4. TIME-DEPENDENT PROPERTIES OF A VISCOUS VORTEX RING

Using (10), we can obtain time-dependent properties of a viscous vortex ring.
In particular, the circulation and enstrophy are

I = Jjgdrd_x = flzu—exp(—rz)) = Ty(l-exp(-17))
.

Rg

00 09

2
1 2 M

2y iy
o= 4]t -(5]
i

8(Ry(m)1"2) :

The velocity of an unsteady ring is defined as []

J:_[“ (¥ + 6xrv)cdxdr
U = —;°°—2— |2J;°J” r cdxdr

Saffman derived this formula using the Lamb’s transformation []4] for the

velocity of a ring in an ideal fluid and confirmed its validity for the viscous flow.

Based on (20), by using (7), the velocity can be defined as

(16)

(17)

(18)

(19)

(20)
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where £ = an. I cFdxdr = gšLsnp J jcfmdodn = gšLsanl is the

n—OO —OOn

kinetic energy.
In [*] the asymptotic drift velocity U has been found, which is valid for the

self-similar regime. We will seek the result, which will give the time dependence
of U not only for the self-similar regime, but in the range of validity of the

solution (10). The second integral (21) can be rewritten using the integration by
parts

_6Tc‘fmn |°_°°° — Tfa%(nm)dn }dc = —-6}o’{— chodn + ]: nzfmdn ]do
0 —OO 0 —OO —OO

= 6E, —6J j onfodndo.
0 —oo

The result is

25 00 00

n SoL 2
U= Ü—Z—[Wšl -GI jon fmdndo]

0 —OO

The Fourier integral transform for nza) is

2 . 2° 2

I1 (G*c)exp(—z%) J‘ nzexp(—%)exp(ina)dn

12+02+0c2 2
= Il(o'c)exp(——z—)(l -0

Using the Hankel’s integral transforms (13), (14) and the Parseval’s theorem, we

obtain

(21)

(22)

(23)

(24)
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Integration with respect to o gives the final result for U

M
oo

v=M5 [ (1 - erfu -6p%) + 6(1)pexp-u)/](amd
47 ROn

The integral (26) can be expressed in the form

2.. 2
U = s en(s Vi(s)4n”Ry

PU 2) 12

1 1/2 2 33 5 2
+ I—Z(T'C) T 2F2[{ s’s},{s’3},—l]

12
3(m) ° 2 35 7y .2a 0 ()

where ,F, is generalized hypergeometric function 4

By substituting the expansion J,(tjt) in series for low values of 7 into the

place of J%(Tu) from [s], we can obtain the result for the asymptotic drift

velocity of the vortex ring as follows:

3
o 0

U, = —A% j [Bi(-02)(0>+6a)+(1+6a7)]da
321°R;,

—

M 2807 7 M

2Ry P 13 gmve)™?

where Ei is an integral exponential function.

The formula(27) and the result in [4] are identical and valid for the final period
of the vortex ring decay.

(25)

(26)

(27)
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5. RESULTS AND DISCUSSION

Calculations were made for the stream function and the ring’s translation

velocity in the range 0 <l< 10. A typical plot of the stream function ¥ for

T = 5 lis shown in Fig. 1. The expression for a circular line vortex [l2] in our

designations is

M 0 2 2 2 410
Yx= ~kIK(K)

SBR[
£ &
e

|(2n2fi)R(2){(" ) k
}

n +(1+0)"

where K and E are elliptical integrals of the first and second kind, respectively

The comparison of ¥ with ¥, for different values of T = 2,5, 10 along
o -axis is shown in Fig. 2. The results are normalized by M/(2nR;). As shown

in this figure, ¥— ¥, as 7 increases. The comparison of ¥ with ¥, along
1 -axis leads to the same results. The calculations by (16) for the low values of 1

lead to the values identical with Phillips’ self-similar solution. The tendency of

the evaluated translation velocity as T— 0 to the asymptotic drift velocity is

consistent with this statement. Thus, the expression (16) describes the field of

stream function, which is initially an approximation of a circular vortex line and

finally transformed into the self-similar distribution in [6].

Fig. 1. Contour plots of streamfunction ¥ for t = 5

(28)
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The translation velocity of the vortex ring, which is determined by (26) up to

T = 10, is shown in Fig. 3. It is obtained by using the polynomial fitting of

2 1
e

Jy(tu) from [ls]. In such a long time limit as t* =% T itcoincides

| Ry 7

with a curve, which corresponds to the calculation of the asymptotic drift velocity
(27), and for the early times (t — 10) it tends to the values, which are predicted
by the Saffman’s formula for a vortex ring with a small cross-section. The
difference in their values for T = 10 (the highest value of T in our calculations)

is less than 2%. All the results in Fig. 3 are normalized by I'y/R, = M/nRš,
where I'n is the initial circulation from (18). Having obtained the ring's

translation velocity, the next step is to find the velocity of the trajectory of max ¢.

Fig. 2. Comparison of distributions of ¥ — Eq. (16) (solid line) and ¥, - Eq. (28) (dashed line) for

different values of T.
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By substituting ¢ = ©
m

Ito (17), we obtain the velocity in the location of the

vorticity maximum

2
oo

Mz
U, = SJ.(1 —erf(—%ž))pjl(m)JO(amp)dp.

2Ry (2)

Accordingly, the new expression for the asymptotic drift velocity of the vortex

ring is

M

Ui = T RT. 1.01098
.

(Bmvie)

As it can be seen from (27) and (30), both expressions for the asymptotic drift

velocity of the vortex ring have similar dependence on time, but the values of U,
are approximately twice higher than those of U,. The difference between U and

U,, reduces with T increasing, and it becomes only 12% of U for T = 10.

For the comparison with the experimental data, we assume that a virtual origin
in time 7, can be formally determined by the equality

Fig. 3. Time variation of the translation velocity of a viscous vortex ring (solid line). Dashed line

shows the asymptotic drift velocity and the dashdot line is the result from ).

(29)

(30)
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—
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which leads to determining the value of 7, as follows:

2

1 = )it e
N >0e

Using (32), theoretical and experimental results for different initial Reynolds
numbers can be compared. Figure 4 shows the profiles of the translation velocity

of the experimentally produced in water rings for Re, = 400 (7], and the presented

theoretical results (26) for FO =4 02/ s M=4nmn c4/s, Rp=lc¢) and

v =O.Ol ¢%/s. As shown in Fig. 4, the velocity (26) is in good agreement with the

experimental data for long and short time intervals, and slightly deviates from

these data for the intermediate time values. The velocity obtained in the positions
of max¢ is also shown in Fig. 4. An agreement with experimental data is better

for the velocity calculated by (26) than in this case.

6. CONCLUDING REMARKS

In addition to the linear solution of the Navier—Stokes equations, valid for a

low Reynolds number in the form of vorticity distribution, a new integral
expression for the corresponding stream function was derived by applying the

Fig. 4. Comparison of temporal variations of the velocities U — Eq. (26) and U,,, — Eq. (29) for the

Reynolds number Re( = 400 with experimental data (.

31)

(32)
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method of integral transforms. It was shown that the obtained vorticity and stream

function transform into Phillips’ results in a long time limit. This allowed us to

consider them as an extension of the Phillips’ solution to a wider range of time

variation. Since the new evaluated expression of the stream function is free from

singularities, it can be suggested as a useful approximation to the well-known

expression of a circular line vortex frequently used in the vortex dynamics. Using
the method of integral transforms and the Parseval’s theorem, time-dependent
translation velocity of the ring was obtained. The presented translation velocity
showed better agreement with experimental data than the power-like functions

used for this purpose earlier. Furthermore, this result allowed for the estimation of

the distance x(#), which the ring passes during its evolution.
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VISKOOSSE KEERISRÕNGA LIIKUMISPARAMEETRID

Felix KAPLANSKI jaÜlo RUDI

Tuginedes Navier’—Stokesi vorrandite varem leitud lineaarsele lahendile keeri-

selisuse ja voolufunktsiooni jaotuste kujul, on esitatud mudel, mis iseloomustab

keerisronga evolutsiooni viskoosses vedelikus. Selline lahend on rahuldavas

kooskolas senituntud lahenditega keerisronga evolutsiooni alg- ja 10ppstaadiumis.
On määratud keerisronga translatsioonikiirus, mis ldheneb Saffmani valemiga
maddratud kiiruse viddrtusele keerisronga evolutsiooni algstaadiumis ning langeb
kokku keerisronga assiimptootilise kiirusega keerisronga evolutsiooni lõpp-
staadiumis.
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