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Abstract. This paper proposes and analyzes new schemes of the low-distortion three-phase diode

rectifiers with capacitive smoothing, using active diode-switched transformer filters. The power

factor correction technique proposed is based on the third-harmonic power conversion into an

additional dc power in the active filter.
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1. INTRODUCTION

Contemporary power electronic converters, using switches and diodes as

basic conversion elements, represent an important link between power sources

and loads for transforming and adapting the parameters of electrical energy to

consumers' needs. Unfortunately, switches and diodes inevitably cause the

generation of distortion harmonics. Therefore, harmonic reduction as well as

power quality problems in general, become increasingly important. Among the

major sources of harmonic distortion, diode-bridge rectifiers, particularly those

with capacitive smoothing, are widely used ['?*]. Active filters (AF), which use

fully controlled switches, facilitate provision of both approximately sinusoidal

line currents and controlled dc output voltage of diode rectifiers ['].
Nevertheless, in the case of uncontrolled output voltage, various less expensive

https://doi.org/10.3176/eng.1997.3.02

https://doi.org/10.3176/eng.1997.3.02


159

filter topologies can be efficiently used for power factor correction [**’].
Considerable harmonic reduction and the corresponding power factor

improvement can be achieved by means of the second-harmonic power
conversion in single-phase rectifiers and the third-harmonic power conversion in

three-phase rectifiers into an additional portion of dc power. By using various

techniques, this trend seems promising [**’]. In this paper, first, some new

efficient diode-switched transformer AFs for power factor correction of the

three-phase diode-bridge rectifiers with capacitive smoothing of the output
voltage are proposed and then analyzed. Second, the possible filter

configurations are compared to achieve the optimum schemes.

2. OPERATING PRINCIPLES

With regard to power flow, the line-current harmonic reduction is based on the

improvement of the power conversion process. Let us consider power conversion

in the three-phase diode rectifier shown in Fig. 1. The circuit contains a diode

bridge (DB), a current-shaping AF, a resistive load R, two smoothing capacitors C

in series connection to provide the midpoint n for the output voltage V,, and a zero-

sequence filter (ZSF) to provide the zero-potential terminal O of the symmetrical
sinusoidal supply voltages v4, vp, and v¢ with vq = V), sinwt, where V,,is the

amplitude value of supply voltage. The passive ZSF can be implemented, for

example, by a zigzag autotransformer [°], a star-delta transformer [’], or an

autotransformer in the Scott connection [**]. To simplify the analysis, assume that

the DB and ZSF are ideal, output capacitances are equal to infinity, and the AF

ensures the appropriate waveforms of the rectified currents iy, i and the zero-

sequence current i,, needed for the power factorcorrection.

Fig. 1. Three-phase diode rectifier with a passive zero-sequence filter and current-shaping active

filter.
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2.1. Operation mode ofsinusoidal supply current

From the analysis of an ideal case with sinusoidal supply currents iy, ip, and

ic with ig = 1,,, sin ot [*], where 1,,, is the amplitude value of current, we obtain

kzi‘/—glm (—1 sin3a)t+—l—sin9cot—...),3 2M 2 20

ig=max{ip,ig,ic}+i,[3=igo +i,/2+ige +ig2 +...

= film(l—isin3o)t+isin6cot+—3—sin9wt+...),27 4 35 40

ig =—min{iA,iß, iC}—iZ/3 =igo —iz/2+id6 +idl2 +e

=
—3Jš

I (I+š—sin3a)t+2—sin6mt——?—-sin9a)t +) ,

27 4 35 40

VN = max {VA, VR, Vc}

=
fl_-?’— V., (I—lsin3o)t+isin6o)t+isin9mt+...),21 4 35 40

VeN = Min {vA, VB» VC}

=
—3—@

Va (I+lsin3cot+lsin6(nt—isin9cot+...).27 4 35 40

As in the ideal case assumed, the average supply power P equals the output

power

P =V, I =P =15V,11,

and from (2) and (3), the output current is

I, = (iao +igo)/2 = igo = (343/2m)1,, = 08270 I, ,

where igp and ig( are the dc components of the currents iy and i, respectively.
Then from (6) and (7), the output voltage is

(4)

(5)

(6)

(7)

(1)

(2)

(3)



V, =P, /1, =(r/3)V,, =18138V,, . (8)
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At the same time, the dc component of the rectified voltage Voo is

Vgo = (3v3/m) Vi, = 16540 V,,, <V,,

and, consequently, the dc power at the output of the DB, Fj,( can be written as

Pigo = Vago Io = (27/2%) V;y 1,, = 091189 B, <P, =P,. (10)

Thus, with regard to the energy flow, in the case of undistorted operation

mode, the DB consumes the power P; at the supply frequency and converts it to

the dc power Pgeo=o.9llB9 Pg, the third-harmonic power Pgy3 =0.08549 Py,
the sixth-harmonic power Pgg6=0.00149 P;, the ninth-harmonic power

P4g9 =0.00085Py, etc. Since Pyoo + Pyg3 = 0.99738 Py, the supply power Py is

converted mainly to the dc and third-harmonic power as shown in Fig. 2.

To ensure the undistorted operation mode of the DB with the sinusoidal

supply current, two principles can be used, either separately or in a combination.

The first one involves dissipation of the third-harmonic power component Py, 3,

using, for example, a resistive ballast R, in the filter structure. In this case, the

power factor PF = 1 and the efficiency n = 0.91 can be achieved.

The second principle comprises the conversion of the power component Py3
in the AF into an additional portion of the dc power Pgpg =Pge3 to be

consumed by the load as shown in Fig. 3. The sum of Py, and P 4 equals the

output power P,,.

Fig. 2. Power conversion in the diode bridge DB under undistorted operation mode.

9)
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2.2. Operation mode of twelve-pulse supply current

The twelve-pulse operation mode enables one to eliminate lower supply-
current harmonics up to the eleventh and ensure the power factor PF =0.99.

Therefore, in practice, such an operation mode is usually an acceptable
approximation of the operation mode of the sinusoidal supply current [**].
Figure 4 shows the corresponding ideal normalized current waveforms in the

circuit in Fig. 1. In this case, /,,=1 equals the fundamental harmonic amplitude
of the twelve-pulse supply currents iy, ig, and ic. The characteristic current

values can be expressed as follows:

Fig. 3. Power flow diagram for the circuit in Fig. 1.

Fig. 4. Normalized current waveforms in the circuit in Fig. 1 for the twelve-pulse supply current

mode.



Pgo = Vägo lo =13995V;,, 1,, =0.9330 P, < P, = P, (19)
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The three-level supply current

g = I,„[sinwt+isinllo)t+isinl3(:)t+ )11 13

has a minimum level

4. T

LAmin =š|zz|=sl„, =0.26181,, ,

a medium level

] TC(l+ 3)1 =0.71521,, ,11 i|= A
—,lAmedz[š'+ (—3)|z| 12

and a maximum level

4 |i|=n—(—2—t@lm=o.977olm.lamax={3+ 77)1 12

The two-level rectified currents iy and i, have a minimum level

; jo liI -045%41Idmin =/emin ——x/—š——4«/š m m

and a maximum level

s 1), j] 1(1+33)
ld max

— ‘gmax = I+f I’zlzlAmax+?=4—\/§_lm=]-2388 Im.

The output current is

; 3; dm A ——n(2+J—)l =0.84611,.—dmax tldmin —. _|_z=
=0 »loz'—r'n%———'dmax 2 B\/5

The rectangular zero-sequence current is

i, = —% L» sign(sin3oot) = -0.7854 [,, sign(sin 300)

= —lm(sin3o)t+šsin9(ot+%sinlswt+ )
From (9) and (17), the average dc power of the DB is

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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Consequently, like in the operation mode of the sinusoidal supply current, the

DB consumes the power P;=1.51,,V,, at the supply frequency and converts it to

the dc power Pggo and to ac, typically to the third-harmonic power Pgg3.
Likewise, the power Pg,3 is consumed in the AF and converted into the

additional portion of the dc power P4pg that corresponds to the power flow

diagram in Fig. 3.

3. PROPOSED IMPLEMENTATION OF THE TWELVE-PULSE

OPERATION MODE

To implement the twelve-pulse operation mode, AF in the circuit in Fig. 1 has

to ensure the required current relations (11)—(18). For that purpose, diode-

switched inductor AFs can be used [**°]. A simple diode-switched inductor AF

ensures high efficiency, close-to-unity power factor, and high reliability.
However, its main disadvantage is that relatively large stored energy and

inductance values are needed to guarantee level current steps [*].
The inductor energy, inductance, and size can be reduced considerably

replacing the time-variable diode-switched inductors by the diode-switched

transformer 73 and the relatively small coupled inductors Ly and L, as proposed
in Fig. 5. The role of the coupled inductors is to reduce the even harmonics of

the rectified currents iy and i,. The appropriate modulation of the currents iy
and i, is provided by the triple-frequency transformer 73 with the primary turns

Npo =Ny and secondary turns Ng = Nor= Nik= Nig= Nyy.

Fig. 5. Three-phase diode rectifier with the proposed active diode-switched transformer filter.
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From (4) and (5), the primary voltage of the transformer is

3/3 .

L
Vao =

g ¥ (—sm3cot+fi sin 9wz — )
Consequently, the secondary voltages of the transformer are

Voo Nt/Ny .Vik =Vkm =

VnVfi =Vef

In the circuit in Fig. 5, the diodes Dy,..., D 4 are switched on and off

alternatively due to the sign variation of the transformer voltages. During the

interval 0 < ot <3o°, we have v,9 <O. Therefore, the diodes D; and D 3 are
reverse-biased, while the diodes D, and D 4 are conducting. Assuming zero

magnetization current, the total amper-turns of the transformer are

i»Nno + idminNef +igmaxNkm =0

and

i,Ny = "'(idmin +igmax)Nll .
From (15), (16), and (23), the transformer ratio required to ensure twelve-pulse
operation mode equals

NoI -04641
Ny Igmin + igmax 3+ ZJš

During the interval 30° < wr < 60° with v,p> 0, the diodes D, and D 4 are
reverse-biased, while the diodes D; and D 3 are conducting. Consequently, the

total amper-turns of the transformer are

i;Nno + idmaxNjf + igmiank =O.

From (22) and (25), we obtain that rms current of the windings N,r and Ny is

equal to ismin/Jž, of the windings N and Njr to idmax/«/ž, and of the

winding No to |i-|.
Letus take into account the fact that flux linkage of the transformer depends

mainly on the third-harmonic component of the winding voltages. As a result, the

rated volt-amperes of a single winding are egual to the product of the winding
rms current value and to the rms value of the third-harmonic component Vl3 or

Vw 11 3 of the corresponding winding voltage. From (20) and (24), we obtain

AD N =0.06785V,.VNI3 = 3{/5— Vm = 0.1462 Vm , VNII3=
NII

VNI3 0. m

81t /2

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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From (15), (16), (22), (25), and (26), the total volt-amperes of the transformer

windings are

lamin +
Sr3=2 Vyms ÄL“EJ—žd—'Ei +Vyis|iy|= 02771V, 1,, = 0.1848 P,

Hence, the equivalent volt-ampere rating of the tripled-frequency transformer 73
becomes

VAT 3 = —;— ST3 =0.0924 Ps
,

I.e. 9.24 % of the rated supply power P;.
In Fig. 5, the passive ZSF has been implemented by the autotransformer 77 in

the Scott connection to provide the zero-potential terminal O of the symmetrical
sinusoidal supply voltages. Its equivalent volt-ampere rating VAr, calculated

following the procedure used in the case of the transformer 73, becomes

VATI = -š— STI = 02746 Ps .
Analysis of the power transfer in the AF shown in Fig. 5 indicates that the

conversion of the third-harmonic power Pgg3 into the additional dc power P4ro
takes place in the diodes Dy,..., D4. In fact, these diodes, together with the

transformer secondary windings, constitute two full-wave auxiliary rectifiers

supplied by the third-harmonic voltage. It is essential for the rectified third-

harmonic voltage to have a sixth-harmonic ripple-voltage component to

compensate the undesired sixth-harmonic component of the voltage vg,. As a

result, the task of the inductors Ly and Lg is to smooth mainly the twelfth-

harmonic ripple.
Analysis of the conversion processes indicates that the volt-amperes rating of

the transformer 73 can be reduced, replacing the two full-wave auxiliary
rectifiers by two half-wave rectifiers as shown in Fig. 6. To ensure the twelve-

pulse operation mode, the transformerturns have to be chosen as follows.

In the case of the four-winding configuration (Fig. 6a), Nj= Njy, Njf= Nmk
and consequently

N,,+N; [

__ef____Lf_=_.d_m_a_"_=l+\/§, Nej=\/§Njf'
N s Idmin

In the case of the three-winding configuration (Fig. 6b), Nos= Nj; and we have

N .efz.llzl =Jš,Nef=JšNno-
- 11%min

(27)

(28)

(29)

(30)

(31)
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The volt-ampere ratings of the transformers shown in Figs. 6a and 6b are

equal to VAr3,=0.0777 Pgand VA3,= 0.0495 Py, respectively.

4. SIMULATION AND EXPERIMENTAL RESULTS

To verify the feasibility of the proposed AFs, the system illustrated in Figs. 5

and 6 has been tested using computer simulation. In addition, a laboratory
rectifier corresponding to Fig. 5 has been built and tested.

The three-phase diode rectifier, using alternative AF configurations, was

simulated with the following specifications: vA= Jž 127 sin 10077,
C = 2000 uF, and R = 100O. The optimum transformation ratios were used. The

simulation proved that the input and output characteristics of the rectifier do not

depend on the AF configuration used. The simulated current waveforms iy, i-/3,

and o, shown in Fig. 7, correspond to Ly= L,= 0.01 H and to the power factor

Fig. 6. Alternative active diode-switched transformer filters: a, four-winding configuration
b, three-winding configuration.
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PF =0.99. A further increase of the inductances L; and L, results in more level

steps of the twelve-pulse supply currents, but without essential increase in the

power factor.

However, a close-to-unity power factor can be ensured using a third-harmonic

series-resonant filter in the branch with the current i,. In this particular case, the

AF configuration shown in Fig. 5 proved to be more advantageous due to the use

of the symmetrical full-wave auxiliary rectifiers. In the twelve-pulse operation
mode, the AF configuration shown in Fig. 6b has to be preferred due to the

minimum rated volt-amperes of the transformer 73.

The simulated voltage waveforms vy, v, V,, are shown in Fig. 8. Note that

due to the third-harmonic power conversion into an additional portion of the dc

Fig. 7. Simulated current waveforms.

Fig. 8. Simulated voltage waveforms.
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power taking place in the diodes Dy, ..., D4, V,>v4eo and vg> vge. Note also

that the fundamental ripple frequency of the voltage vp is increased twice as

compared to that of the voltage v4,. The experimental rectifier was implemented
with the following specifications: rms supply voltage V=l27 V, rms supply
current /; =2.65 A, supply power Pg= 1.0 kW, output voltage V, =3OBV,

output current [, =3.08 A, output power P,=949 W, N,,x/N,0=0.5,

C= 1000 pF, and rms zero-sequence current /,=3.02 A. In the case of the

inductances Lg=Ly=O.OOB H, the efficiency n=0.95 and power factor

PF = 0.99 were measured.

5. CONCLUSION

In regard to the energy flow, the reduction of the supply-current distortion is

based on the improvement of the energy conversion processes. In three-phase
diode rectifiers with the capacitive smoothing of the output voltage, a

considerable reduction of distortion together with the corresponding
improvement of the power factor can be achieved using an AF with a diode-

switched transformer. It converts the third-harmonic ripple power into an

additional dc power consumed in the load. The proposed alternative filter

configurations have the same number of diodes, but a different number of

windings. The three-winding filter configuration ensures the minimum rated

volt-amperes.
The main advantages of the proposed filter schemes are high power factor,

efficiency, and reliability as well as a relatively small volt-ampere rating of the

filter transformer.
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UUED DIOODKOMMUTATSIOONIGA TRANSFORMATOORSED

AKTIHVFILTRID MAHTUVUSLIKU SILUMISEGA

KOLMEFAASILISTE DIOODALALDITE VÕIMSUSTEGURI
PARANDAMISEKS

Tiiu SAKKOS ja Vello SARV

Niitidisaegsete voimsuselektronmuundurite pohielementideks on pooljuht-
lilitid, mis paratamatult genereerivad moonutusharmoonilisi. Oluliseks moonu-

tuste allikaks on ka mahtuvusliku silumisega alaldid. Kolmefaasiliste diood-

alaldite moonutuste mirgatavaks vihendamiseks ning voimsusteguri suurenda-

miseks on esitatud dioodkommuteeritava trafoga aktiivfiltrite uued skeemid.

Nende t66 pohineb alaldi pulsatsioonivoimsuse muundamisel tdiendavaks

viljundvoimsuseks.
Kolme esitatud ja analiilisitud filtriskeemi iseloomustavad lisaks heale

voimsustegurile viikesed kaod ning viike arvutuslik vOimsus. 12-pulsiline
tooreZiim voimsusteguriga 0,99 on tagatav lihtsa kolmemihiselise filtritrafoga,
mille arvutuslik voimsus on ainult 5% toitevoimsusest.
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