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Abstract. The paper deals with the low-speed impact of rigid bodies. The elasticity and damping 
forces, acting on a body during the impact, depend on the physical properties of the material; in this 
work these forces are considered according to the Kelvin–Voigt, Bingham and Maxwell models of 
the medium. New models of the forces, acting during the impact, are elaborated. Numerical 
solutions of the equations for various impact forces are obtained. 
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1. INTRODUCTION

Collisions of moving bodies are inherent on all levels of Universe – from 
microcosm up to space; therefore the shock phenomena are rather diverse. 
Specific features of impacts are their rapidity and intensity. They can appear both 
useful, as for example the piles driving, vibro-impact systems, extraction of ore 
or in ball games or harmful, as for example transport accidents. Hence, the 
problem of impact is very important not only for theorists, but also for designers, 
motorcar drivers, sportsmen, etc. Classification of impacts depends on the 
distribution of the deformations in each of the colliding bodies and how these 
deformations influence the period of contact. Local deformations during the 
impact depend on the initial velocity of the contact point and on the rigidity of 
the bodies [1–3]. In this work the low-speed impact that does not cause inter-
penetration of the bodies is considered. The low-speed impact leads to the 
contact pressure, which gives small deformations that are significant only in the 

https://doi.org/10.3176/eng.2007.2.07

https://doi.org/10.3176/eng.2007.2.07


 141

small area adjoining the contact area. Impulsive forces are a response to the 
deformations, arising near the contact area and propagating in the bodies. 
Mathematical models reflect this process more or less completely. 

In the classical theory of rigid body impact, deformations are not taken into 
account and only integrated characteristics of the impact forces (their impulses) 
are considered. This approach involves the application of fundamental laws of 
mechanics to predict the velocity after impact. Impulse-momentum equation 
S m v= ∆  (m  is mass of the body and v  is velocity), connecting pre-impact and 
post-impact velocity, forms the core of this approach. Algebraic nature of this 
method makes the mathematical development easy and accessible to most 
engineers, but this approach is unable to predict the contact force between the 
bodies or stress in them [4]. 

When the body is completely deformed during the impact, the wave theory, 
which describes the stress state of bodies most completely, is applied. This theory 
is based on complex equations, having an exact solution only in specific cases. 

The models, partially considering deformations, are intermediate between 
these two extreme approaches. In these models it is supposed that motion of all 
the body during impact is described by the differential equations of motion of a 
rigid body F ma=  (F  is force and a  is acceleration) [5]. The forces, acting 
during the impact time take into account viscoelastic properties of real bodies and 
are modelled by a set of springs and dampers [4,6,7]. Such models are discussed in 
this paper; both linear and non-linear models of the elastic force and damping 
forces are considered. Our aim is to find the most suitable model of frictionless 
impact for the calculation of vibro-impact systems, in particular, for the 
determination of the motions, accompanied by impacts. 

 
 

2. MODELS  OF  IMPACT  FORCES 
FOR  THE  KELVIN–VOIGT  MEDIA 

 
Kelvin–Voigt media involve the parallel-connected linear spring and damper 

and the mechanism of impact contact is modelled by the second order linear 
differential equation 

 

,mx cx bx= − −�� �                                              (1) 
 

where c  is the spring rigidity factor and b  is the damping factor. 
This model permits analytical definition of the law of motion ( ),x t  the change 

of the velocity ( )v t  and impulsive force ( )F t  during the impact [8]: 
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In Eqs. (2)–(4) 0v  is the pre-impact velocity, 1λ  and 2λ  are roots of the 
characteristic equation for Eq. (1): 
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The time moment, when the impact force ( )N t  becomes equal to zero, 
determines the duration of the impact .T  For the duration of impact to have a real 
value, the rigidity of the spring must be large; then 1λ  and 2λ  are complex 
numbers and the duration of impact T  will be 
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In this case the coefficient of restitution of the velocity e  does not depend on 
the pre-impact velocity and is determined by 
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In Fig. 1 the plots of ( , )T b c  and ( , )e b c  are presented for a body with a mass 
of 1 kg,m =  where the rigidity c  changes from 2 × 106 to 2 × 107 N/m and b  
from 200 to 1000 N/m/s. It is obvious that the duration of impact is mostly 
influenced by the elastic part of the impact force. 

In Fig. 2 the dependence of the impact force N  and its elastic part cx  on the 
displacement and the dependence of the velocity v  on the displacement in case 
of the Kelvin–Voigt model are presented for 1 kg,m =  c = 2 × 106 N/m, 

0v = 2.5 m/s, b = 400 N/m/s; 0.69.e =  
The disadvantage of this model is the occurrence of tensile forces by the end 

of the impact that is physically impossible. 
For the elimination of this disadvantage, some authors suggest to multiply the 

damping part of the impact force by displacement; then the equation of motion 
during impact will be 

 

1 .mx cx b xx= − −�� �                                              (6) 
 

Here the value of the damping factor 1b  is different from the value of b  in 
Eq. (1). By identical duration of the impact in both cases, the coefficients of 
restitution e  will be different. 
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Fig. 1. Dependence of the duration of impact T  and of the coefficient of restitution e  on the 
coefficients b  and c  in the case of Kelvin–Voigt model. 
 
 

 
 

Fig. 2. Dependence of the impact force N  and its elastic part cx  on the displacement and 
dependence of the velocity v  on the displacement in case of the Kelvin–Voigt model ( 1,m =  
c = 2 × 106, 

0
2.5,v =  400).b =  

 
 

In Fig. 3 the dependence of the impact force N  and velocity v  on the 
displacement in accordance with Eq. (6) for 1 kg,m =  c = 2 × 106 N/m, 

0v = 2.5 m/s, b = 4 N/m/s, are shown; in this case 0.78.e =  
 
 

 
 

Fig. 3. Dependence of the impact force ,N  its elastic part cx  and velocity v  on the displacement 
in the case of the changed damping part in the Kelvin–Voigt model ( 1,m =  c = 2 × 106, 

0
2.5,v =  

1
b = 4 × 105). 
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The disadvantage of this model is that the variation of 1b  influences the final 
velocity of impact only a little; thus the coefficient of restitution e  becomes large. 

 
 

3. MODELS  OF  IMPACT  FORCES  FOR  THE  BINGHAM  MEDIA 
 
The model of the Bingham media differs from the Kelvin–Voigt model by an 

additional force P  (an analogue to dry friction), the direction of which depends 
on the direction of the velocity. In this case the equation of motion of a body 
during impact is 

 

sgn( ).mx cx bx P v= − − −�� �                                     (7) 
 

The force P  does not influence the time of impact, but it reduces the 
coefficient of the restitution of velocity in comparison with the Kelvin–Voigt 
model. An example is shown in Fig. 4. 

In this model a tensile force is also generated; it is impossible to eliminate this 
force by multiplying the damping part of the force by displacement. Such a 
motion is described by the equation 

 

1 sgn( ).mx cx b xx P v= − − −�� �                                  (8) 
 

An example is shown in Fig. 5. 
 

 

 
 

Fig. 4. Dependence of the impact force ,N  its elastic part cx  and velocity v  on the displacement 
in case of the Bingham media ( 1,m =  c = 2 × 106, 

0
2.5,v =  200,b =  400);P =  0.66.e =  

 
 

 
 

Fig. 5. Dependence of the impact force ,N  its elastic part cx  and velocity v  on the displacement in 
case of the changed Bingham media ( 1,m =  c = 2 × 106, 

0
2.5,v =  200,b =  400);P =  0.79.e =  
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Fig. 6. Dependence of the impact force ,N  its elastic part cx  and velocity v  on the displacement 
in the case of the Bingham medium without the damping part ( 1,m =  c = 2 × 106, 

0
2.5,v =  

800);P =  0.80.e =  
 
 
If in the Bingham model we do not take into account the damping force and 

take into account the constant force P  in one direction – in compression phase, 
the tensile stress does not appear. The differential equation that describes the 
motion during impact is in this case 

 

( 0,0,1).mx cx Pif v= − − ≤��                                        (9) 
 

The Mathcad logical function (cond, , )if a b  returns a  if logical condition is 
true, b  otherwise. 

Dependence of such a force on the displacement is presented in Fig. 6. 
The independence of the damping from the velocity is a disadvantage of this 

model. 
 
 

4. THE  MODEL  OF  THE  IMPACT  FORCE   
FOR  THE  MAXWELL  MEDIUM 

 
The model of the viscoelastic Maxwell medium consists of a spring and a 

damper, connected consistently, thus the force P  and the displacement are 
related by the equation 

 

1
,

P
x P

b c
= + �

�                                                  (10) 

 

where b  is a factor describing the viscosity of the medium and c  is the factor 
describing elasticity. 

In this case the equation of motion during impact can be obtained taking into 
account the relationship 

 

.mx P= −��  
 

The contact force and the law of motion are determined from the equations 
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If the roots of the characteristic equation for Eq. (11) are complex numbers, 

the duration of impact is determined as 
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The coefficient of restitution e  does not depend on the pre-impact velocity 

and can be expressed in the form 
 

2
exp .

4

cm
e

b cm

π −=   − 
 

 
In Fig. 7 the plots of ( , )T b c  and ( , )e b c  are shown for 1 kg.m =  
Duration of impact is comparatively large; such a model may be useful for 

certain materials. 
 
 
 

 
 
Fig. 7. Dependence of the duration of impact T  and coefficient of restitution e  on the coefficients 
b  and c  in case of the Maxwell medium. 
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5. MODELS  OF  IMPACT  FORCES,  BASED  ON  THE  HERTZ  
CONTACT  FORCE 

 
Hertz investigated a static problem about impression of a rigid sphere into an 

elastic semi-space and showed that the elastic force was proportional to the displace-
ment raised to the power 3/2. In accordance with this, the elastic part of the force we 
can take as the Hertz force and taking into account the damping force we obtain 

 

3

2 .mx cx bx= − −�� �                                             (12) 
 

Figure 8 shows the dependence of this force on the displacement. 
The tensile force, generated in this model, can be eliminate multiplying the 

damping part of the force by displacement; the received equation describes the 
motion during impact: 
 

3

2 .mx cx bxx= − −�� �                                           (13) 
 

Dependence of this force and velocity on the displacement is presented in Fig. 9. 
The coefficient of restitution e  in the first case is 0.86 and in the second  

case 0.79. 
We suggest the following definition of the impact force: assuming that the 

impact force depends both on the Hertz contact force and on the growth rate of 
this force, the equation of motion during impact can be written as 

 

3 1

2 2
1 .mx cx b x x= − −�� �                                           (14) 

 

In this case the damping part of the force emerges as the derivative of the elastic 
force, multiplied by the damping factor. Damping factor 1b  represents the 
incorporated value, equal to (3/2) c  multiplied by the corresponding value of 
damping. 

In Fig. 10 the plot of the suggested impact force is presented. 
 
 

 
 

Fig. 8. Dependence of ,N  
3 2

cx  and v  on the displacement in the case of the Hertz force ( 1,m =  
c = 2 × 106, 

0
2.5,v =  40).b =  
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Fig. 9. Dependence of the impact force N  and velocity v  on the displacement in the case of the 
Hertz force and changed damping force ( 1,m =  c = 2 × 106, 

0
2.5,v =  b = 2 × 104). 

 
 

 
 

Fig. 10. Dependence of the impact force N  and velocity v  on the displacement for the model (14) 
( 1,m =  c = 2 × 106, 

0
2.5,v =  

1
800);b =  0.85.e =  

 
 

6. MODEL  OF  THE  HUNT–GROSSLEY  CONTACT  FORCE 
 
Hunt and Grossley [8] derived a model of the impact force with non-linear 

spring-damper, satisfying the boundary condition. The non-linear model is 
described as 

 

.n nmx k x x xλ= − −�� �                                           (15) 
 

The restoring part of the force is represented by the Hertz contact force and its 
damping part is the product of the Hertz force, the velocity of deformation and 
the parameter .a  The equation of motion during impact is 

 

3 3
2 23

.
2

mx cx axcx= − −�� �                                          (16) 

 

The plot of the Hunt–Grossley impact force is shown in Fig. 11. 
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Fig. 11. Dependence of the impact force N  and velocity v  on the displacement in the case of the 
Hunt–Grossley force ( 1,m =  c = 2 × 106, 

0
2.5,v =  0.1);a =  0.80.e =  

 
 
 

7. NUMERICAL  SOLUTION  OF  THE  MOTION  EQUATION   
OF  A  SYSTEM  WITH  IMPACTS 

 
To determine the motion of a system with impacts one has to include the 

contact force in the system of equations describing the motion. It is convenient to 
apply models of two last forces, whose deformation curve takes the shape of a 
hysteresis curve. Besides the motion we shall receive also the value of the impact 
force. We shall consider numerical solution of the motion of a ball, falling 
vertically downwards under gravity with frictionless impacts against the floor 
and rebounding (Fig. 12). 

 
 

 

Fig. 12. Motion of a ball subject to gravity and bouncing on the floor. 
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The differential and algebraical equations of the motion of this body are: 
 

0,mx =��  
 

,m y mg N= +��  
 

0, if 0,N y= <  
 

el dam , if 0,N N N y= + ≥                                   (17) 
 

where the impact force N  consist of elastic el( )N  and damping dam( )N  parts. 
There is no rotation of the body and the initial conditions are: 0,t =  0,x =  

,y h= −  0,x =�  0.y =�  
The mass of the body is 1 kg, the motion begins from 0.60 mh =  and the 

velocity before the first impact is 3.43 m/s. 
Numerical solution of the system (17) was obtained with the Euler method, 

which gives acceptable results if t s∆ =  is small enough; the algorithm is as 
follows: 

 

1 ,n n ny y y t+ = + ∆�  
 

1

1
.n n ny y g t N t

m+ = + ∆ + ∆� �  

 

For the impact force in accordance with model (14) we obtain 
 

3 1

2 2
1 1( ) ( 0,1,0),n n n n nN c y b y y if y+ = − − ⋅ ≥�  

 

in accordance with model (1) 
 

1 ( ) ( 0,1,0),n n n nN c y b y if y+ = − − ⋅ ≥�  
 

and in accordance with model (6) 
 

1 1( ) ( 0,1,0).n n n n nN c y b y y if y+ = − − ⋅ ≥�  
 

The problem was solved with the Mathcad program. Step of integration was 
selected as 0.00002.s =  

In Figs. 13 to 15 the results of numerical solution of the equations (17) with 
impact force in accordance with model (14), based on the Hertz force with 

610 ,c =  1 1350b =  are presented. 
For comparison of the impact forces influence, the results of the numerical 

solution of the system (17) are given for the forces in accordance with the 
Kelvin–Voigt model (1) and the modified Kelvin–Voigt model (6). The solution 
for the impact force model (1) with 62 10c = ×  480b =  is presented in Figs. 16 
to 18. The solution for the impact force model (6) with 62 10c = ×  and 

58 10b = ×  is shown in Figs. 19 to 21. 
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Fig. 13. Dependence of the coordinate 
n

y  on time with impact force based on the Hertz force model. 

 
 
 
 

 
 

Fig. 14. Dependence of the velocity on time with impact force based on the Hertz force model. 
 
 
 
 

 
 

Fig. 15. Dependence of the impact force on time based on the Hertz force model. 
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Fig. 16. Dependence of 
n

y  on time for the Kelvin–Voigt impact force model (1). 

 
 
 

 
 

Fig. 17. Dependence of the velocity 
n

v  on time for the Kelvin–Voigt impact force model (1). 

 
 
 

 
 
Fig. 18. Dependence of the impact force N  on time for the Kelvin–Voigt impact force model (1). 
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Fig. 19. Dependence of 
n

y  on time ( )y y t=  for the modified Kelvin–Voigt model (6). 

 
 
 

 
 

Fig. 20. Dependence of the velocity 
n

v  on time for the modified Kelvin–Voigt model (6). 

 
 
 

 
 

Fig. 21. Dependence of the impact force N  on time for the modified Kelvin–Voigt model (6). 
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For the force models (1) and (14), the coefficients of restitution are the same 
( 0.64),e =  but impact forces are different; in both cases the impact is infinitely 
damped. 

In the case of the model (6), the coefficient of restitution is equal to 0.54 for 
the first impact and for every following impact it is increased and approaches 

1.e =  
If we have experimental data about the coefficient of restitution, we can 

match the coefficients c  and b  in order to receive the proper value for e  and 
impact time ,T  thus the damping and elastic parts of the impact force may be 
evaluated. 

 
 

8. CONCLUSIONS 
 
The models of impact forces, partially considering deformations, are the most 

convenient for systems with frictionless impacts, as they permit to use common 
differential equations of dynamics with additional contact forces for the solution 
of the problems of motion. The simplest Kelvin–Voigt model, which is a linear 
model both for stiffness and damping, shows physically impossible tensile 
component in the hysteresis loop. 

The models of impact forces, based on the Hertzian contact theory for point 
contact, show a more realistic force–displacement diagram: in the unloaded 
initial position 0x =  the spring-damper force is equal to zero. This approach 
permits to calculate the value of impulsive forces and deformations during the 
impact if characteristics of the material are known. The models of suggested 
contact forces represent the impact cycle from the beginning of the contact to its 
end. 
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Jäikade  kehade  põrke  mudelid,  mis  osaliselt   
arvestavad  deformatsioone  

 
Svetlana Polukoshko, Janis Viba, Olga Kononova ja Svetlana Sokolova 

 
Põrke mudelid, mis arvestavad kehade deformeerumise iseloomu, on kõige 

sobivamad hõõrdevaba põrke kirjeldamiseks, kuna need võimaldavad kasutada 
harilikke diferentsiaalvõrrandeid. Lihtsaim lineaarne Kelvini–Voigti mudel, mis 
arvestab küll nii jäikust kui ka dissipatsiooni, annab hüstereesi silmuse läbimise 
tulemusena füüsikaliselt ebareaalse tõmbejõu. Põrke mudelid, mis põhinevad 
punktkontakti korral tekkivatel Hertzi kontaktjõududel, annavad palju realistli-
kuma diagrammi jõud–siire, sest koormusvabas algasendis on jõud vedrus/ 
amortisaatoris võrdne nulliga. Juhul kui materjali karakteristikud on teada, või-
maldavad esitatud mudelid leida impulssjõu ja deformatsiooni väärtused põrke 
suvalisel hetkel. Esitatud kontaktjõudude mudelid võimaldavad kirjeldada põrke-
tsükli kulgu kogu tsükli vältel. 

 


