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Abstract. The numerical finite element analysis was used to determine the stress concentration 
factor in the microstructure of porous polymer materials as a function of porosity, distribution 
mode of pores and loading direction under tensile loading. The results show that the lowest stress 
concentration factor is characteristic for such polymer materials that exhibit the lowest stiffness 
changes of matrix adjacent zones in their microstructure. Low stiffness changes of matrix adjacent 
zones are obtained when the porosity value is high, pores are heterogeneous and the longitudinal 
axis of thin microstrips between the pores form an angle of 45° with the direction of tensile. 
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1. INTRODUCTION

Contemporary porous materials are widely used instead of the monolithic 
ones because they are cheaper and lighter and exhibit good strength and deform-
ability [1]. These materials and products made of them are ubiquitous in the 
automotive, aviation, packaging, furniture, sewing and footwear industry [1–5]. 

Porous materials are heterogeneous systems with complex microstructure [6]. 
These systems are diphase composites with a solid matrix and gaseous filler [7]. 
They can be made from polymers, metals and ceramics [8–12]. Macromechanical 
properties of such heterogeneous systems depend not only on the nature of the 
materials but on their morphology as well [12–14]. 

A kind of porous materials is formed by foams or by so-called cellular 
materials. Although the mechanics of low-density polymeric foams, the porosity 
of which is commonly higher than 0.8, has been widely investigated [1,7,15–17], the 
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effect of lower levels of porosity on the mechanical behaviour of polymeric 
materials is an item that has been poorly treated in the literature [18]. Porous 
polymers that are not foams, are usually fabricated either by the addition of a 
second phase with a lower density or by the addition of a blowing agent prior to 
curing [2]. Such porous polymers typically have bubble (approximately spherical) 
pores, which may be homogeneous or heterogeneous. The distribution mode of 
pores usually has a random character, but in certain conditions a periodical pore 
distribution has been observed [14]. 

Some studies were carried out to determine the influence of the specific micro-
structure on the mechanical behaviour of porous polymer materials [2,14]. However, 
it is unclear which porosity mode of a polymer material is superior from the point 
of view of mechanics. The aim of this investigation is to evaluate the influence of 
the microstructural stiffness, determined by the porosity and distribution mode of 
pores, on the stress concentration factor of porous polymer materials. 

 
 

2. EXPERIMENTAL 
 
The microstructure of porous polymer materials was analysed using SEM 

images. The form, density, distribution mode and level of heterogeneity of pores 
was determined. This analysis showed that a typical porous polymer contains 
pores, which usually are spherical and dispersed in the matrix. Subject to above-
mentioned peculiarities of the microstructure, various stiffness variations of matrix 
adjacent zones can be observed for different porosity modes; although the porosity 
is the same. 

In order to clarify the influence of microstructural stiffness changes on the 
stress concentration factor of the porous polymer material, numerical analysis was 
used. Using the finite element code ANSYS, plane models were designed to utilize 
symmetry and periodicity, assuming that there are no through-the-thickness 
stresses in the plane. Eight-node quadrilateral PLANE183 (Structural Solid) 
elements were used. Three types of microstructural models, which differ from each 
other in the stiffness changes of matrix adjacent zones, were investigated (Fig. 1). 
Each model was described by a representative volume element (RVE) [14]. Model I 
was designed with similar pores, which lay in parallel rows with equal distance 
between them in each direction (Fig. 1a). The diameter of these pores was 1.d  The 
high microstructural stiffness changes were characteristic for this model. Model II 
was created on the basis of Model I; additional pores, diameter of which was 

2 1,d d<  were added into interpore zones, located between pores 1d  (Fig. 1b). This 
insertion of additional pores decreased the stiffness of matrix adjacent zones. 
Model III consisted pores of three sizes that varied according to selected criteria: 

3 2 1d d d< <  (Fig. 1c). The lowest microstructural stiffness changes were charac-
teristic for Model III. The ratio of pore diameters to the main dimension L  of RVE 
was proportionally changed as follows: 1 0.01 0.20,d L = −  2 0.02 0.12,d L = −  

3 0.02 0.04.d L = −  A more detailed description of these models is given in [19,20]. 
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Fig. 1. Models of the microstructure of porous materials: (a), (b), (c) – distribution modes of pores 
of Models I, II and III, respectively; θ – angle of the tension direction; Z – two matrix adjacent 
zones: a thin microstrip and a large interpore zone. 

 
 
In order to investigate the effect of the loading direction on the deformation 

behaviour, the angle θ  of the tension direction with the principal direction of the 
unit element is introduced and parametrically varied from 0 to 45°. 

The boundary conditions on the macroscopic scale are that the upper surface 
is shear free with a constant displacement constraint; the bottom surface has 
constraints on two directions at the point of the symmetry axis of the model and 
in one direction in other points. The right and left surfaces are assumed to be 
stress free [21]. 

A butadiene-nitrile rubber SKN-40 was used as the matrix material. From the 
previous investigations it is known that the Mooney–Rivlin equation describes 
well the mechanical behaviour of this material [22], thus this equation was used in 
the present study. The Young modulus of the matrix material is 2.67 MPa and the 
Poisson ratio is 0.48. 

 
 

3. RESULTS  AND  DISCUSSION 
 
The influence of the material porosity value γ  on the stress concentration 

factor Kσ  changes for models, as they are loaded by constant strain 0.2,ε =  is 
presented in Fig. 2.  In the case of  Model I,  for the  low  material  porosity value  
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Fig. 2. The dependence of the stress concentration factor Kσ on the porosity γ  for Model I 
(curve 1), Model II (curve 2) and Model III (curve 3) by constant strain ε = 0.2. 

 
 

high stress concentration is observed. As the material porosity increases up to 
0.5, stress concentration factor is considerably reduced. This decrease is 
determined by the decrease of the deformation force due to the increase of pore 
diameters and decrease of the volume fraction of the matrix [19]. For porosity 
higher than 0.5, independently of the decrease of the deformation force, the stress 
concentration factor increases monotonously. For this porosity mode, significant 
changes of the material geometry occur. Between pores in equator zones, only 
thin material strips are formed but interpore zones are relatively large (Fig. 1a). 
Due to abrupt stiffness changes of matrix adjacent zones, the stress concentration 
factor markedly increases. 

The curves of stress concentration factors Kσ  of Models II and III have 
minimums as in the case of Model I. The factors Kσ  decrease as porosity 
increases and for the higher material porosity value, they insignificantly increase 
(Fig. 2). The decrease of Kσ  is caused by the decrease of the deformation force 
as in the case of the Model I. The increase of it is related to the stiffness changes 
of the matrix adjacent zones (thin microstrips formed between pores 1d  and 2d  
in the case of Model II and between pores 2d  and 3d  in the case of Model III). 
The stress concentration factor of Model III is the lowest. 

The dependence of the stress concentration factor Kσ  of the models on the 
porosity γ  and on the angle of loading direction θ  is presented in Fig. 3. When 
the porosity increases up to 0.5, the stress concentration factor decreases for all 
loading directions. The stress concentration factor is the highest when 0 .θ = °  In 
this case the longitudinal axis of microstrips coincides with the direction of the 
tension. As θ  increases, the stress concentration factor decreases and it is the 
lowest when 45 .θ = °  That can be explained using the scheme presented in 
Fig. 4,  in which the small element of Model I is shown for two cases: 0θ = °  and  
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Fig. 3. The dependence of the stress concentration factor Kσ on the porosity γ  and on the angle of 
the tension direction θ  for Models I, II and III when they are loaded by constant strain ε = 0.2. 
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Fig. 4. Small element of Model I in two cases: (a) θ = 0°, (b) θ = 45°. 
 
 
45 .θ = °  The maximal and minimal lengths of the cross-sections of the elements 

can be written as 
 

max 0 2 ,a l° =                                                             (1) 
 

min0 12 ,a l d° = −                                                      (2) 
 

max 45 12.83 0.705 ,a l d° = −                                        (3) 
 

min45 12.83 .a l d° = −                                                  (4) 
 

From Eqs. (1) to (4) follows 
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max 0 min0 1,a a d° °− =                                                   (5) 
 

max 45 min 45 10.295 .a a d° °− =                                          (6) 
 

From Eqs. (5) and (6) follows that the difference of cross-section dimensions 
of the elements at 0θ = °  is about three times higher than at 45 .θ = °  Since the 
tensile stiffness depends on the dimensions of the cross-section, it is clear that 
Model I has the highest tensile stiffness when 0θ = °  and the lowest difference 
when 45 .θ = °  

Therefore if the longitudinal axis of thin microstrips is parallel to the direction 
of the tensile, the stress concentration factor is the highest. If the angle between 
microstrips and the direction of tensile is equal to 45 ,°  the stress concentration 
factor is the lowest. 

In the case of Model II, two kinds of microstrips are formed. One of them is 
the same as in the Model I, formed between pores 1.d  Other microstrips are 
formed between pores 1d  and 2d  and the angle between their longitudinal axis 
and tension direction by 0θ = °  is equal to 45 .°  Thus the stress concentration 
factor of Model II depends on the microstrips orientation with respect to the load 
direction and on the thickness of microstrips. In the case of lower porosity 
( 0.51 0.63)γ = −  Model II exhibits very small pores 2.d  The thinner are the 
microstrips formed between pores 1,d  the bigger is their influence on stress 
concentration. Therefore in this case the stress concentration factor is the highest 
when 0θ = °  and the lowest when 45θ = °  like in the Model I. In the case of 
higher porosity ( 0.68 0.79),γ = −  the thinner are the microstrips formed between 
pores 1d  and 2d  the higher is their influence on the stress concentration factor. 
As the angle θ  increases, the thin strips between pores 1d  and 2d  are oriented in 
the direction of tension and the stress concentration factor increases. However, 
the influence of the loading direction on the stress concentration factor of Model III 
is low as compared to Models I and II, due to low microstructural stiffness 
changes characteristic to this model. If in the case of Model II the maximal 
difference of stress concentration factors is about 50%, in the case of Model III 
this difference is equal to 16%. 

In order to investigate non-linear behaviour of the models in the case of large 
deformations, the dependence of the stress concentration factor on the stiffness 
changes, model type, porosity and strain was determined (Fig. 5). 

It is seen that stress concentration factors of all models increase as the strain 
increases. In the case of low strain ( 0.2)ε =  the stress concentration factor of 
Model I is significantly higher than that of Models II and III. The same result was 
obtained in the case of the linear relationship (Fig. 2). For large deformations 
( 1.4)ε =  the stress concentration factor of Model I is considerably higher than 
that of Model III. It follows that if the distribution mode of pores of a polymer 
material is similar to that of Model III, the strength of the material is significantly 
higher than that of the polymer material with distribution mode of pores 
according to Model I. 

 



 153

 

K
σ 

0

0.5 

1

1.5 

2

2.5 

3

Model I 
γ = 0.5 

Model II 
γ = 0.7 

Model III 
γ = 0.8 

0,6

1

1,4

ε = 0.2
ε = 0.6
ε = 1.0
ε = 1.4

 
 
Fig. 5. The dependence of the stress concentration factor Kσ on the strain ε for Models I, II and III. 

 
 

4. CONCLUSIONS 
 

1. The stress concentration factor of porous polymer materials loaded by 
constant strain ( 0.2)ε =  depends on the porosity and on the distribution 
mode of pores. It was established that by small and rare pores the stress 
concentration factor is high ( 3).Kσ ≈  In the case of low strains and high 
porosity ( 0.5),γ ≥  the stress concentration factor is low if stiffness changes 
of the matrix adjacent zones are smooth. 

2. The value of the stress concentration factor depends on the orientation of the 
matrix microstrips with respect to loading direction and on the stiffness 
changes of the matrix adjacent zones. If the longitudinal axis of thin 
microstrips is parallel to the direction of the tensile, the stress concentration 
factor is the highest. If the angle between microstrips and the direction of 
tensile is equal to 45 ,°  the stress concentration factor is the lowest. 

3. In all the investigated cases of the strain, the stress concentration factor is the 
lowest in such porous polymer materials that exhibit the lowest stiffness 
changes of the matrix adjacent zones. 
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Mikrostruktuurse  jäikuse  muutuste  mõju  poorsete  
polümeersete  materjalide  pingekontsentratsiooni  tegurile 

 
Daiva Zeleniakiene 

 
Poorsete polümeersete materjalide mikrostruktuuri pingekontsentratsiooni 

teguri kindlakstegemiseks sõltuvalt poorsusest, pooride suuruse jaotusest ja tõmbe-
pingega koormamise suunast on kasutatud lõplike elementide meetodit. On 
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näidatud, et väikseim pingekontsentratsiooni tegur on iseloomulik sellistele 
polümeersetele materjalidele, mille mikrostruktuuri jäikus muutub vähe maatriksi 
naaberalades. Sellist mikrostruktuuri iseloomustab kõrge poorsus, pooride suuruse 
heterogeenne jaotus ja pooridevaheliste õhukeste mikroribade pikitelgede nurk 45º 
tõmbepingete suuna suhtes. 

 
 


