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Abstract. A direct numerical simulation (DNS) approach to Eulerian–Eulerian dispersed two-
phase flow is discussed. The need for a stress term in the momentum transport equation of the
dispersed phase is identified and a simple model for this stress term is proposed. Measurements
of the dispersed phase quantities such as number density, mesoscopic velocity and stress
tensor components from a reference computation, using Lagrangian particle tracking, allows
to validate the predictions of the Eulerian–Eulerian computation.
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1. INTRODUCTION

Particle-laden flows are of great interest since they occur in a variety of
industrial applications such as chemical reactors or internal combustion engines,
in which either solid or liquid particles are injected in a gas flow. These two-
phase flows are characterized by a high level of dynamic coupling and inertia
effects, which depend on the particle relaxation time. Commonly used Lagrangian
particle tracking techniques are able to handle most of these complex physical
processes. However, they are also known to be numerically expensive, as they
require a high particle number density to reach a minimum level of accuracy.
For unsteady simulations of practical applications of turbulent industrial flows in
complex geometries, Lagrangian methods can not be efficiently used today.

As an alternative, a three-dimensional unsteady Eulerian–Eulerian approach is
proposed to simulate dispersed two-phase flows. In this approach the dispersed
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phase is treated as the continuous gas phase, through an averaging operator that
leads to a system of conservation equations, very similar to those for the gas.
The main advantage is therefore that the gas phase algorithm may be used onthe
dispersed phase with the same numerical accuracy and computational efficiency.
However, this averaging operation introduces unclosed terms [1] in the equations
that need to be modelled. These terms are the non-linear term in the transport
operator and other terms related to the unresolved part of the particle velocities.

The Eulerian–Eulerian approach has already been successfully applied to
Reynolds-averaged simulation (RANS) of turbulent flows. The objectiveof the
present work is to extend this approach to unsteady three-dimensional simulations
of complex flows. Long-term objective is to extend this method to an approach
comparable to large eddy simulation (LES) as being used in aerodynamics or
recently in reactive flows. LES has become a very attractive tool and hasproven to
be very efficient on inert turbulent flows. Its use for reactive flows isquite recent
and its extension to the two-phase flow needs specific developments.

In the present paper, a model for the unclosed non-linear terms of the dispersed
phase equations is proposed. This term has a direct impact on the particle
momentum transport equation and is crucial in order to capture dynamics and
dispersion. It controls the segregation effects that in turn control many other
physical processes like mass and heat transfer or particle–particle interactions.

The proposed model is based on an additional stress term in the dispersedphase
momentum equation, as described in the first section of the paper. Two different
approaches for calculating this stress term may be used. One is tested in the case
of homogeneous isotropic decaying turbulence, computed in a quasi DNS mode,
and compared to an Eulerian–Lagrangian DNS reference solution. In thiscase it
is possible to derive relations for several integral quantities that are very useful to
cross-check the Eulerian and Lagrangian approaches.

2. THE EULERIAN MODEL

Eulerian equations for the dispersed phase may be derived by severalmeans.
A popular simple way consists of volume filtering of the the separate, local,
instantaneous phase equations accounting for the inter-facial jump conditions [2].
Such an averaging approach is very restrictive, because particle sizes and particle
distances have to be smaller than the smallest length scale of the turbulence.

A different, not totally equivalent way is the statistical approach in the frame-
work of the kinetic theory. By analogy to the derivation of the Navier–Stokes
equations by kinetic theory [3], a probability density function (PDF)f (1)

p (cp;xp, t)
may be defined. This gives the local instantaneous probable number of particles
with the given translation velocityup = cp. This function obeys a Boltzmann-type
kinetic equation, which accounts for momentum exchange with the carrier fluid
and for the influence of external forces such as gravity and inter-particle collisions.
Transport equations of the first moments (such as particle concentration,mean

92



velocity and particle kinetic stress) may be derived directly by averaging from the
PDF kinetic equation [4].

For the sake of simplicity, in this feasibility study interaction forces are limited
to drag, considering non-evaporating particles in the absence of gravity. The
extension to evaporating flows, gravity force, turbulence corrections inthe drag
force and other interaction forces is not in conflict with the presented derivation
of the Eulerian field equations. In the presented approach, the gas is presumed
undisturbed by the dispersed phase. Therefore the passage from one-way to two-
way coupling is more delicate.

2.1. Conservation equations for particle properties

To derive local instantaneous Eulerian equations in dilute flows (without
turbulence modification by the particles), Février et al. [5] propose to use an
averaging over all dispersed-phase realizations, conditioned by one carrier-phase
realization. Such an averaging procedure leads to a conditional velocity PDF for
the dispersed phase

f̃ (1)
p (cp;x, t, Hf ) =

〈

W (1)
p (cp;x, t) |Hf

〉

. (1)

HereW
(1)
p are the realizations of the position and velocity in time of any given

particle [6] andHf is the unique carrier flow realization. With this definition one
may define a local instantaneous particulate velocity field, which is here named
“mesoscopic Eulerian particle velocity field”. This field is obtained by averaging
the conditioned velocity PDF over all particle-flow realizations:

ũp (x, t, Hf ) =
1

ñp

∫

cpf̃
(1)
p (cp;x, t, Hf ) dcp. (2)

Here

ñp =

∫

f̃ (1)
p (cp;x, t, Hf ) dcp (3)

is the “mesoscopic” particle-number density and

〈Φ̃〉p =
1

ñ
(1)
p

∫

f̃ (1)
p Φdcp (4)

stands for any ensemble-averaged quantity.
For simplicity, the dependence of the above variables onHf is not shown

explicitly. Application of the conditional-averaging procedure to the kinetic
equation, governing the particle PDF, leads directly to the transport equations for
the first moments of number density and mesoscopic Eulerian velocity

∂

∂t
ñp +

∂

∂xi
ñpũp,i = 0, (5)
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ñp
∂

∂t
ũp,i + ñpũp,j

∂

∂xj
ũp,i = −

ñp

τp
[ũp,i − ui] −

∂

∂xj
ñpδσ̃p,ij . (6)

Here δσ̃p,ij is the mesoscopic kinetic stress tensor of the particle velocity
distribution discussed in Section 2.2. One of the current objectives is to show that
this term is non-negligible for inertial particles in the turbulent flow. Due to the very
small droplet Reynolds number, measured in the simulation, the particle relaxation
time τp is defined as the relaxation time for the Stokes drag:

τp =
ρpd

2

18µ
. (7)

2.2. The stress tensor of random uncorrelated motion

The stress term in Eq. (6) arises from an ensemble average of the non-linear
term in the transport equation for particle momentum

ñpδσ̃p,ij =

∫

(cp,i − ũp,i) (cp,j − ũp,j) f̃ (1)
p (cp;x, t, Hf ) dcp, (8)

ñpδσ̃p,ij = ñp〈δup,iδup,j |Hf 〉p, (9)

and contains the uncorrelated part of the particle motion. The uncorrelatedpart of
the particle velocity is here referred to as random uncorrelated motion (RUM) 1.
When the Euler or Navier–Stokes equations are derived from kinetic gastheory,
the trace of〈δup,iδup,j〉p is interpreted as temperature (ignoring the Boltzmann
constant and molecular mass) and related to pressure by an equation of state. In
the case of the Euler or Navier–Stokes equations, the temperature is defined as the
uncorrelated part of the kinetic energy. Here the uncorrelated part ofthe particulate
kinetic energy is defined as

δθ̃p =
1

2
〈δup,iδup,i|Hf 〉p. (10)

By analogy to the Euler or Navier–Stokes equations, a random uncorrelated
motion pressure (RUMP) may be defined by the product of uncorrelated kinetic
energy and particle number density as

PRUM = ñp
2

3
δθ̃p. (11)

1 Random uncorrelated motion(RUM) has been referred to asquasi Brownian motion
(QBM) in previous publications [1,5,7]. We agree that the expressionquasi Brownianis
misleading since the physical interpretation of the uncorrelated motion is not ofBrownian
nature.
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When the particle number distribution becomes non-uniform, as in the case of
a compressible gas, this pressure term tends to homogenize the particle number
density.

The non-diagonal elements of the stress tensor can be identified, by analogy
to the Navier–Stokes equations, as a viscous term due to shear. The diagonal part
of the stress tensor is then proportional to one third of the trace of the tensor and
an eventual deviation, such thatñpδσ̃p,ij = PRUMδij − δτ̃p,ij . The momentum-
transport equation (6) becomes

ñp
∂

∂t
ũp,i+ñpũp,j

∂

∂xj
ũp,i = −

ñp

τp
[ũp,i − ũf,i]−

∂

∂xi
PRUM+

∂

∂xj
δτ̃p,ij . (12)

By analogy to the derivation of the Navier–Stokes equations from kinetic gas
theory, the stress term can be related to the gradients of the first moments, based
on the Onsager relations [8]. Making some assumptions on symmetry and isotropy,
the stress term can be modelled as

τ̃p,ij = µRUM

(

∂ũp,i

∂xj
+

∂ũp,j

∂xi
−

2

3

∂ũp,k

∂xk
δij

)

. (13)

The dynamic viscosity, related to RUM, can be estimated byµRUM =
1/3ñpτpδθ̃p [1], where τp is the relaxation time related to Stokes drag. This
expression can be obtained using the transport equation for the complete stresses
〈δup,iδup,j〉 and supposing isotropic behaviour in shear flow [3].

Preliminary tests with the closure model, given in Eq. (13), failed since
excessive segregation prevented the completion of the numerical simulation.
There are two possible origins of this difficulty: the chosen spatial resolution is
insufficient to resolve the physics or the closure model does not describe the proper
physics. Supposing that the numerical resolution of the model is insufficient, a
subgridmodel, acting on the compressible component of the velocity, is chosen.
This subgrid model has the form of a bulk viscous termξSGS∂ũk/∂xkδij , which
is added to the shear viscosity term̃τp,ij in Eq. (13). The subgrid bulk viscosity is
mesh-size dependent(ξSGS ∝ ñp(∆x)2|∂ũk/∂xk|). In homogeneous turbulence,
the spatial average of this bulk viscous term is zero; still it acts locally and leads
to a smoothing of the number density field. Computations are performed with
this heuristically introduced bulk viscosity. The closure model (13) requires the
knowledge ofδθ̃p, which is developed in the next section.

2.3. The equation for random uncorrelated kinetic energy (RUE)

To calculate the RUE, two approaches are presented; the first one assumes
a quasi-isentropic behaviour of the dispersed phase, leading to an algebraic
expression forδθ̃p

δθ̃p = Añ2/3
p , (14)
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whereA is the residual mean kinetic energy of the particles, averaged over the
computational domain, weighed by moments of the particle distribution. In order
to defineA, it is necessary to introduce some definitions. Spatial averages (over
the computational domain) are defined as{φ} = 1/V

∫

V φdV . Particle-pondered
averages are defined as{φ}p = {ñpφ} / {ñp}. This allows to defineA as

A = {ñp} δq2
p/{ñ

5/3
p }. The mean residual particle kinetic energy is defined as

δq2
p = {δθ̃p}p. Equation (14) relates therefore the kinetic energy of the local

residual particle to the mean kinetic energy of the residual particle. It can be
obtained using the conservation equation for number density (Eq. (5)) and the
lowest order conservation equation for RUE in the Chapman–Enskog expansion [3]

∂

∂t
ñpδθ̃p +

∂

∂xj
ñpũp,jδθ̃p = −

2

3
ñpδθ̃p

∂ũp,j

∂xj
. (15)

A conservation equation for̃n−2/3
p δθ̃p can be obtained combining Eq. (5),

multiplied by −2
3 ñ

−5/3
p δθ̃p and Eq. (15), multiplied bỹn−2/3

p . With the above

assumptions,̃n−2/3
p θ̃p is a conserved quantity and locallyθ̃p should be proportional

to ñ
2/3
p . This property was tested using the results of Lagrangian particle tracking

in homogeneous isotropic turbulence. Figure 1 shows the conditional average of
RUE as a function over particle number density at different times of the simulation

Fig. 1. Conditional average of RUM kinetic energy vs the number density from Lagrangian
simulation at different times of the simulation.
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and shows the validity of this isentropic approximation. Lagrangian simulations,
performed by Février [7] in stationary homogeneous isotropic turbulence, suggest
that the mean residual kinetic energyδq2

p depends on the resolved dispersed phase
kinetic energyq̃2

p = 1/2 {ũp,kũp,k}p, on the fluid–particle correlationqfp =

{ũp,kuk}p, whereuk is the carrier phase velocity, and on the carrier phase kinetic

energy, pondered by the particle presenceq2
f@p = 1/2 {ukuk}p. This expression is

given as

δq2
p = q̃2

p

(

4q̃2
pq

2
f@p

q2
fp

− 1

)

. (16)

The second approach uses the full transport equation for random uncorrelated
kinetic energy [1]. This equation is an equivalent to the internal energy equation of
the Navier–Stokes equations:

∂

∂t
ñpδθ̃p +

∂

∂xj
ñpũp,jδθ̃p = −2

ñp

τp
δθ̃p

−

[

PRUMδij − ξSGS
∂ũp,k

∂xk
δij − µRUM

(

∂ũp,i

∂xj
+

∂ũp,j

∂xi
−

2

3

∂ũp,k

∂xk
δij

)]

∂ũp,i

∂xj

+
∂

∂xj

[

kRUM
∂

∂xj
δθ̃p

]

. (17)

The third-order correlation is modelled as a diffusive flux like thermal diffusion
in the Navier–Stokes equations. The diffusivity constant for RUE is estimated as
kRUM = 5/3ñpτpδθ̃p. This is the equivalent of the Fick’s law for the heat flux in
the Navier–Stokes equations.

3. DESCRIPTION OF THE NUMERICAL TEST

Homogeneous isotropic turbulence is one of the classical cases, where the
dynamics and dispersion of particle laden flows can be studied. This has been
done extensively using the Lagrangian formalism and encouraging results and
insight have been obtained with such methods. Comparison of Lagrangian particle
tracking in decreasing homogeneous isotropic turbulence [9] with experimental
measurements of particle dispersion in grid generated turbulence [10] show
that essential features of the particle dynamics can be captured. Preliminary
computations with a simplified Eulerian formalism of this test case gave
encouraging results [11]. In the case of tracer particles (small Stokes number
limit) Eulerian methods are well suited to describe the dynamics [2]. With
increasing Stokes number, the particle velocities become decorrelated with the
gaseous carrier-phase velocity. Inertia effects become important and segregation
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occurs for Stokes numbers about unity. The subject of the study is therefore not
only the development of an adequate numerical tool but to show the validity ofthe
Eulerian approach for Stokes numbers from the tracer limit(St → 0) to unity.

3.1. Initialization of the test case: the gaseous velocity field

The gaseous carrier phase is initialized by a divergence-free velocity field,
obeying a Passot–Pouquet spectrum for the kinetic energy:

E(k) = C

(

k

ke

)

e−2(k/ke)2 . (18)

Herek is the wavelength andke corresponds to the most energetic wavelength.
The initial gaseous solution is then numerically advanced over a characteristic time
scale of the turbulence in order to establish a physical spectrum and velocity field
that is the solution of the Navier–Stokes equations.

The Reynolds numberRe = u′l/ν, based on the integral length scalel and
u′ is 18. The spatial resolutions of the Eulerian simulations are643 and 1283

equidistant nodes. After a non-dimensional time oft = 4.23 s, the Reynolds
number of the carrier phase is 14. This flow field is taken as the initial flow field
for the carrier phase for all test cases.

Length scales and velocities were made dimensionless by using the length scale
l = 0.001 m and velocity scalec = 347 m/s. The corresponding time scale is
t = 2.8818 × 10−6 s.

3.2. Initialization of the test case: the dispersed phase velocity field

Several options exist to initialize the dispersed phase, although there doesnot
exist a natural way for that. Here particles are considered equally distributed
throughout the computational domain when computation of the dispersed phase
is started. Special attention is taken for the initialization of the dispersed phase
velocity. Three principal possibilities exist:
1) dispersed phase velocity equals carrier phase velocity,
2) dispersed phase velocity equals zero,
3) dispersed phase velocity is partially correlated to the carrier velocity.

In the case of relaxation times, small compared to the characteristic time scales
of the carrier phase, the particles velocity field is close to the carrier phasevelocity
field. In this case it is physical to initialize the dispersed phase velocity field
with the gaseous velocity field and to initialize the RUE field with a value close
to zero. The RUE field can not be initialized with zero since shear viscosity and
RUE flux coefficients are directly linear in RUE. Here only the first initialization
method is considered. Furthermore, simulations are made in the unfavorable case
of the Stokes number(St = τp/Tf ) close to unity, leading to maximal segregation
effects; hereTf = λ/u′ is the turnover time andλ is the integral length scale of the
carrier phase.
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4. COMPUTATION OF THE LAGRANGIAN REFERENCE SOLUTION

The Lagrangian particle tracking method is a well understood tool for the
numerical investigation of particle-laden turbulence. In the case of Stokesdrag,
the particle coordinate and velocities are advanced in time with the following set of
differential equations:

∂

∂t
X

(k)
i = V

(k)
i , (19)

∂

∂t
V

(k)
i =

1

τp

(

ui(X
(k)
i , t) − V

(k)
i

)

. (20)

In realistic applications particle numbers are so large that it is not possible to track
all the particles individually and particles are advanced as “numerical” particles
that are supposed to represent a large number of “physical” particles.In order not
to bias the result by such a procedure, here all particles are computed individually.
Special care is taken to evaluate the gaseous velocityui at the particle location for
the drag force by using high-order interpolation methods [12].

The spatial resolution of the gaseous phase is643 and an average of40
particles are computed per gaseous node. This corresponds to a total of10.48
million individual particles. This high particle number ensures convergencewhen
averaged fields are computed from the discrete particle distribution. The averaged
fields are sensitive to the numerical procedure used. With the high number of
particles used, the error can be shown to be smaller than3% by comparing different
averaging methods. The correlated velocity of the particles is calculated by a
filtering procedure, projecting the correlated velocities on the numerical grid of
the carrier phase. Initially, as for the Eulerian simulation, particle velocities are
either initialized with the gaseous velocities or zero.

5. DYNAMICS OF DISPERSED TWO-PHASE FLOWS IN
HOMOGENEOUS ISOTROPIC TURBULENCE

Integral properties of decaying homogeneous isotropic turbulence canbe
described by a simple set of ordinary differential equations of the integral kinetic
energy and the dissipation of kinetic energy

q2
f =

1

2
{ukuk} , ε =

ν

2

{

∂ui

∂xj

∂ui

∂xj

}

, (21)

where
∂

∂t
q2
f = −ε,

∂

∂t
ε = −C2

ε2

q2
f

, (22)

andν is the kinematic viscosity.
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These equations can be obtained from the Navier–Stokes equations with some
assumptions on the properties of the flow [13], satisfied in incompressible decaying
homogeneous turbulence. Using the Lagrangian equations of particle transport with
Stokes drag (19), (20), a corresponding set of ordinary differential equations for the
fluid–particle correlation and the particle kinetic energy

qfp =
1

N

N
∑

k=1

ui(X
(k)
i , t)V

(k)
i , q2

p =
1

N

N
∑

k=1

V
(k)
i V

(k)
i , (23)

can be obtained for the dispersed phase [14]:

∂

∂t
qfp = −

qfp

τ t
fp

−
1

τp

[

qfp − 2q2
f@p

]

, (24)

∂

∂t
q2
p = −

1

τp

[

2q2
p − qfp

]

. (25)

Here τ t
fp corresponds to the turbulence time scale that governs the dissipation

of fluid–particle correlation. Equation (24) can then be used to calculate this
dissipative time scalea posteriori:

τ t
fp = −

qfp

∂
∂tqfp + 1

τp

[

qfp − 2q2
f@p

] . (26)

The time scale for the dissipation of the carrier phaseτ+ = q2
f/ε and the

relaxation time of the particlesτp can then be compared to the dissipative time
scale of fluid–particle correlation. For comparison, the residual kinetic energy
is computed from the square of the difference between the filtered Lagrangian
velocity and the individual particle velocity.

6. RESULTS AND DISCUSSION

Numerical computations are performed using the initialization procedure,
described in Section 3. The temporal development of the integral values for kinetic
energies and fluid–particle correlation are presented in Fig. 2. Numericalresults
of the Eulerian computation (lines) are compared to the numerical results of the
Lagrangian reference computation (symbols). In the Lagrangian computation the
correlated kinetic energy is calculated using the correlated velocity. The RUE is
then calculated as the difference between the correlated kinetic energy and the total
kinetic energy, obtained as the sum of kinetic energies of all the particles. In the
Eulerian computation, the total kinetic energy of the particlesq2

p is obtained from
the sum of the resolved kinetic energyq̃2

p and the RUEδq2
p. The open triangles give

the RUE, estimated by the values from the equilibrium formula (16). Initially RUE
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Fig. 2. Time evolution of the fluid and particle and fluid–particle velocity correlations
in an homogeneous isotropic decaying two-phase turbulence; comparison of results from
Lagrangian (symbols) and Eulerian (lines) simulations.

is zero since the particle velocity is identical to the carrier phase velocity, which are
by definition correlated. This shows that the Eulerian simulation is able to capture
the dynamics of the dispersed phase. In Fig. 3 the time scales from the Eulerian
simulations are compared. Initially the relaxation time of the particles (solid line)
is about half the dissipative time scale of the carrier phase (dashed line). This
corresponds to the Stokes number of about 0.5. In the decreasing homogeneous
isotropic turbulence, the dissipative time scale increases slowly and thus leads to
a decreasing Stokes number (about 0.3 at the end of the Eulerian computation).
The dissipative time scale of the fluid–particle correlation is initially close to the
dissipative time scale of the carrier phase; it decreases in time so as to reacha level
where it is about half the dissipative time scale of the carrier phase. This agrees with
theoretical considerations [15]. Figure 4 shows snapshots of number density and
RUM Energy in the Lagrangian and the Eulerian computation. The number density
in the Eulerian computation admits smaller variations than in the Lagrangian
computation due to the heuristically introduced bulk viscosity. This bulk viscosity
acts on the compressible component of the velocity and thus limits compressibility
effects. Therefore the particle number density is predicted to be more uniform than
in the Lagrangian simulation. Random uncorrelated energy admits qualitativelythe
same structures in the Eulerian and Lagrangian computation.
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Fig. 3. Comparison of the dissipative time scale of the carrier phase τ+ with the relaxation
time of dragτp and the dissipative time scale of fluid–particle correlation τ t

fp.

 
(a) 

 
(b) 

  
(c) (d) 

 
Fig. 4. Comparison of the normalized droplet number (ñp/〈ñp〉, a and b) and of the RUM
Energy (δθ̃p, c and d) in the Lagrangian (a, c, resolution643) and the Eulerian (b, d, resolution
1283) computation after about one particle relaxation time (t = 10.8 s) in the planez = 0.
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The heuristically introduced bulk viscosity term tends to render a more uniform
spatial particle number distribution. Without this bulk viscosity term, calculations
can currently not be carried out: particle segregation and enstrophy become too
large. Since the spatial average of the volume viscosity is zero, it does notaffect
the temporal evolution of the averaged kinetic energy of RUM of the particlesδq2

p.

Local instantaneous values ofδθ̃p may differ notably from the values obtained in
the Lagrangian simulation. An important remaining question is therefore related
to the subgrid model in the form of the bulk viscosity term. Higher spatial
resolutions should clarify this problem if the encountered difficulties are related
to numerical resolution. However, it is not clear if the modelling of stresses by
Eq. (13) represents correctly the physics and if this is the origin of the encountered
difficulties. This point is under current investigation with the strong support of
Lagrangian simulations.

7. CONCLUSION AND PROSPECT

The presented study shows the capacity of Eulerian formalism to capture the
dynamics of particles even in the vicinity of unity Stokes numbers. Simulations
were performed at very small turbulent Reynolds numbers since simulationswith
higher Reynolds numbers of the carrier phase showed deficiencies in thespatial
resolutions of the dispersed phase. Therefore tests have to be extended to higher
Reynolds numbers and it would be interesting to develop a subgrid model forthe
dispersed phase. This would lead to large eddy simulations in an Eulerian frame-
work which are very interesting for the unsteady computations of industrialapplica-
tions with a high number of particles or droplets. Concerning dispersion measure-
ments, it is interesting to extend the simulations by taking gravity into account
and to test whether the crossing trajectory effect is captured in such an Eulerian
framework.
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Lagrange’i ja Euleri meetodite võrdlus osakeste
arvmodelleerimisel homogeense isotroopse kõduva

turbulentsi juhul

André Kaufmann, Jerome Helie, Olivier Simonin ja Thierry Poinsot

On käsitletud otsese arvmodelleerimise lähendusmeetodit kahefaasilise dis-
persse Euler–Euleri vooluse juhul. On näidatud vajadust lülitada dispersse faasi
momendi transpordivõrrandisse pingeliige ja esitatud lihtne mudel selle liikme
määramiseks. Dispersset faasi iseloomustavate suuruste nagu osakestearvulise
tiheduse, makroskoopilise kiiruse ja pingetensori komponentide määramine
võrdlusarvutustega, kasutades osakeste jälgimiseks Lagrange’i meetodit, kinnitab
Euler–Euleri lähendusmeetodiga saadud tulemusi.
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