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Abstract. A direct numerical simulation (DNS) approach to Eulerianidgian dispersed two-
phase flow is discussed. The need for a stress term in the ntom&ransport equation of the
dispersed phase is identified and a simple model for thisstegm is proposed. Measurements
of the dispersed phase quantities such as number densisgsoapic velocity and stress
tensor components from a reference computation, usingaloggan particle tracking, allows
to validate the predictions of the Eulerian—Eulerian cotafian.
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1. INTRODUCTION

Particle-laden flows are of great interest since they occur in a variety of
industrial applications such as chemical reactors or internal combustgnesn
in which either solid or liquid particles are injected in a gas flow. These two-
phase flows are characterized by a high level of dynamic coupling amtaine
effects, which depend on the patrticle relaxation time. Commonly used Ldagrang
particle tracking techniques are able to handle most of these complex ghysica
processes. However, they are also known to be numerically expemrsivibey
require a high particle number density to reach a minimum level of accuracy.
For unsteady simulations of practical applications of turbulent industriakfia
complex geometries, Lagrangian methods can not be efficiently used today.

As an alternative, a three-dimensional unsteady Eulerian—Eulerianatpis
proposed to simulate dispersed two-phase flows. In this approach trersgidp
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phase is treated as the continuous gas phase, through an averagimtproiheat

leads to a system of conservation equations, very similar to those for the gas
The main advantage is therefore that the gas phase algorithm may be ued on
dispersed phase with the same numerical accuracy and computatioriaheffic
However, this averaging operation introduces unclosed tetfris fhe equations

that need to be modelled. These terms are the non-linear term in the transport
operator and other terms related to the unresolved part of the particlétiesoc

The Eulerian—Eulerian approach has already been successfully dapiplie
Reynolds-averaged simulation (RANS) of turbulent flows. The objeatfvihe
present work is to extend this approach to unsteady three-dimension#htimsi
of complex flows. Long-term objective is to extend this method to an approach
comparable to large eddy simulation (LES) as being used in aerodynamics or
recently in reactive flows. LES has become a very attractive tool angrbaen to
be very efficient on inert turbulent flows. Its use for reactive flowguie recent
and its extension to the two-phase flow needs specific developments.

In the present paper, a model for the unclosed non-linear terms of {hersisl
phase equations is proposed. This term has a direct impact on the patrticle
momentum transport equation and is crucial in order to capture dynamics and
dispersion. It controls the segregation effects that in turn control mamgr o
physical processes like mass and heat transfer or particle—particlaciiers.

The proposed model is based on an additional stress term in the dispbesed
momentum equation, as described in the first section of the paper. Tweediffe
approaches for calculating this stress term may be used. One is tested &s¢he ¢
of homogeneous isotropic decaying turbulence, computed in a quasi DN&, mo
and compared to an Eulerian—Lagrangian DNS reference solution. loabésit
is possible to derive relations for several integral quantities that ayeuseful to
cross-check the Eulerian and Lagrangian approaches.

2. THE EULERIAN MODEL

Eulerian equations for the dispersed phase may be derived by seneaak.
A popular simple way consists of volume filtering of the the separate, local,
instantaneous phase equations accounting for the inter-facial jump cosdtjo
Such an averaging approach is very restrictive, because particteasideparticle
distances have to be smaller than the smallest length scale of the turbulence.

A different, not totally equivalent way is the statistical approach in the frame
work of the kinetic theory. By analogy to the derivation of the Navier—Stoke
equations by kinetic theory'], a probability density function (PDFﬁlgl) (cp; xp, t)
may be defined. This gives the local instantaneous probable numbertiofgsa
with the given translation velocity,, = c,. This function obeys a Boltzmann-type
kinetic equation, which accounts for momentum exchange with the carrier fluid
and for the influence of external forces such as gravity and int¢icfgacollisions.
Transport equations of the first moments (such as particle concentratizsm
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velocity and particle kinetic stress) may be derived directly by averagorg the
PDF kinetic equation’].

For the sake of simplicity, in this feasibility study interaction forces are limited
to drag, considering non-evaporating particles in the absence of gravine
extension to evaporating flows, gravity force, turbulence correctioribardrag
force and other interaction forces is not in conflict with the presenteidadien
of the Eulerian field equations. In the presented approach, the gassisned
undisturbed by the dispersed phase. Therefore the passage feswagrio two-
way coupling is more delicate.

2.1. Conservation equations for particle properties

To derive local instantaneous Eulerian equations in dilute flows (without
turbulence modification by the particles), Février et &]. gropose to use an
averaging over all dispersed-phase realizations, conditioned byasriergphase
realization. Such an averaging procedure leads to a conditional veldaiyfér
the dispersed phase

TV (epix,ty Hy) = (WD (epix.t) [Hy ). (1)

Here WISI) are the realizations of the position and velocity in time of any given
particle F] and H; is the unique carrier flow realization. With this definition one
may define a local instantaneous particulate velocity field, which is here named
“mesoscopic Eulerian particle velocity field”. This field is obtained by avietag

the conditioned velocity PDF over all particle-flow realizations:

N 1 z
up (x,t, Hy) = . /cpfzgl) (cpsx,t, Hy) dcy. (2)
P
Here
My = / FY (epsx,t, Hy) de,, (3)

is the “mesoscopic” particle-number density and
- 1 -
@)= [ FiVade, @)
Np

stands for any ensemble-averaged quantity.

For simplicity, the dependence of the above variablesHgnis not shown
explicitly. Application of the conditional-averaging procedure to the kinetic
eqguation, governing the particle PDF, leads directly to the transport egadtio
the first moments of number density and mesoscopic Eulerian velocity

0 _ o .
&np—I—a—xinpum =0, (5)
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0 0 n 0
Tip - Ui + Tl o2, T, = —T—: [tip.i — wi] — or; Tip0Gp.ij- (6)
Here d5,,; is the mesoscopic Kinetic stress tensor of the particle velocity
distribution discussed in Section 2.2. One of the current objectives is Yo thlad
this term is non-negligible for inertial particles in the turbulent flow. Due to trg v
small droplet Reynolds number, measured in the simulation, the particle refaxatio
time 7, is defined as the relaxation time for the Stokes drag:

ppd?
Tp = . (7
18u

2.2. The stress tensor of random uncorrelated motion

The stress term in Eq. (6) arises from an ensemble average of the ean-lin
term in the transport equation for particle momentum

Np00p,ij = /(Cpﬂ' — Up,i) (Cpj — Upyj) fzgl) (cpix, 1, Hy) dep, (8)

Npd0pi; = Np(dupidup j|Hp)p, ©)

and contains the uncorrelated part of the particle motion. The uncorrgatedf

the particle velocity is here referred to as random uncorrelated motion JRUM
When the Euler or Navier—Stokes equations are derived from kinetithgasy,
the trace of(du, ;du, ;), IS interpreted as temperature (ignoring the Boltzmann
constant and molecular mass) and related to pressure by an equatiote ofiista
the case of the Euler or Navier—Stokes equations, the temperature isiceitiee
uncorrelated part of the kinetic energy. Here the uncorrelated ptré @iarticulate
kinetic energy is defined as

;1
80, = 5 (GupidupilHy),. (10)

By analogy to the Euler or Navier—Stokes equations, a random undedela
motion pressure (RUMP) may be defined by the product of uncorrelaedidk
energy and particle number density as

_ 2 5
PRUM =MNyp § 69}) (11)

! Random uncorrelated motiofRUM) has been referred to agiasi Brownian motion
(QOBM) in previous publications '[>*"]. We agree that the expressiogquasi Browniaris
misleading since the physical interpretation of the urelated motion is not dBrownian
nature.
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When the particle number distribution becomes non-uniform, as in the case of
a compressible gas, this pressure term tends to homogenize the particler numbe
density.

The non-diagonal elements of the stress tensor can be identified, bywanalo
to the Navier—Stokes equations, as a viscous term due to shear. Thealipgad
of the stress tensor is then proportional to one third of the trace of thertando
an eventual deviation, such thatéc, ;; = Prumdij — 07p,i;. The momentum-
transport equation (6) becomes

- - . _ Np ¢ - - -
™ ot Up,i +1pUp,j 8—33] Up,i = _T—;) [tp,i — Tyl = oz, PRUM+3—:1cj 0Tpij- (12)

By analogy to the derivation of the Navier—Stokes equations from kinesic ga
theory, the stress term can be related to the gradients of the first momesed, ba
on the Onsager relation¥][ Making some assumptions on symmetry and isotropy,
the stress term can be modelled as

_ Dip;  Oiip; 2 ity
J— ) oo ) 5 .
Tp,ij HRUM ( 837]‘ + o 3 Ou ij

The dynamic viscosity, related to RUM, can be estimatedipyn =
1/3n,7,06, ['], where 7, is the relaxation time related to Stokes drag. This
expression can be obtained using the transport equation for the conpéstees
(6uyi6u, ;) and supposing isotropic behaviour in shear fléjy [

Preliminary tests with the closure model, given in Eqg. (13), failed since
excessive segregation prevented the completion of the numerical simulation.
There are two possible origins of this difficulty: the chosen spatial resalugio
insufficient to resolve the physics or the closure model does not deshetproper
physics. Supposing that the numerical resolution of the model is insuffigen
subgridmodel, acting on the compressible component of the velocity, is chosen.
This subgrid model has the form of a bulk viscous tegnsdiy/0xyd;;, which
is added to the shear viscosity tefy); in Eq. (13). The subgrid bulk viscosity is
mesh-size dependeffsas x 7, (Ax)?|0iy/dzk|). In homogeneous turbulence,
the spatial average of this bulk viscous term is zero; still it acts locally arts$lea
to a smoothing of the number density field. Computations are performed with
this heuristically introduced bulk viscosity. The closure model (13) requtne
knowledge o6, which is developed in the next section.

(13)

2.3. The equation for random uncorrelated kinetic energy (RUE)

To calculate the RUE, two approaches are presented; the first onmesssu
a quasi-isentropic behaviour of the dispersed phase, leading to anradgeb
expression fobd,
86, = An2/?, (14)
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where A is the residual mean kinetic energy of the particles, averaged over the
computational domain, weighed by moments of the particle distribution. In order
to defineA, it is necessary to introduce some definitions. Spatial averages (over
the computational domain) are defined{ag = 1/V [, ¢dV. Particle-pondered
averages are defined 48}, = {f,¢}/{n,}. This allows to defined as

A = {n,} 5q§/{ﬁ2/3}. The mean residual particle kinetic energy is defined as

5q§ = {5§p}p. Equation (14) relates therefore the kinetic energy of the local
residual particle to the mean kinetic energy of the residual particle. It ean b
obtained using the conservation equation for humber density (Eq. (8))hen
lowest order conservation equation for RUE in the Chapman—Enskamsin }]

0

2 Oty ;

- 9 - -
=N —— Tyl 00, = —= 7 . 1
o Np00, + oz, Tplp, 00, 3 p00)p oz, (15)
A conservation equation foﬁ;2/35§p can be obtained combining Eq. (5),
multiplied by —27, °/?56, and Eq. (15), multiplied byi,>*. With the above

assumptionsﬁf/?’ép is a conserved quantity and Iocaﬂ]yshould be proportional

to ﬁf,/?’. This property was tested using the results of Lagrangian particle tracking
in homogeneous isotropic turbulence. Figure 1 shows the conditionageverf
RUE as a function over particle number density at different times of the simulatio

—_—t/r, = (.55
== t/r, =1.33
- L = 2.33

® ifi, (t/1,=0.55)

<bl)pl fi,> / <oq,2>

[ |
2 3
np/ <h >

Fig. 1. Conditional average of RUM kinetic energy vs the number ierfiom Lagrangian
simulation at different times of the simulation.
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and shows the validity of this isentropic approximation. Lagrangian simulations,
performed by Février] in stationary homogeneous isotropic turbulence, suggest
that the mean residual kinetic ener@yj depends on the resolved dispersed phase
kinetic energyg; = 1/2 {tpriprt, on the fluid—particle correlations, =
{ﬂp,kuk}p, whereuy, is the carrier phase velocity, and on the carrier phase kinetic
energy, pondered by the patrticle preseqﬁ:@p =1/2 {ukuk}p. This expression is
given as

4G
5q2 = ( quf ap 1) . (16)
Typ

The second approach uses the full transport equation for randoarnretated
kinetic energy []. This equation is an equivalent to the internal energy equation of
the Navier—Stokes equations:

0 0 Ty -~
atnpéﬁ + o jnpupjéﬁp = 27—:591,
Dl Diipi  Diip;  20iips .\ Dty
o P 51 L P, 51 R P,? D,J _ - P, 52 . D2
[ RUMOij fSGS—axk j — MRUM < oz, + or. 3 oz ]ﬂ P,
0 0
k 50 17
+ ax] [ RUMa } 17)

The third-order correlation is modelled as a diffusive flux like thermal diéin
in the Navier—Stokes equations. The diffusivity constant for RUE is estarage
krum = 5/3n,1,060,. This is the equivalent of the Fick’s law for the heat flux in
the Navier—Stokes equations.

3. DESCRIPTION OF THE NUMERICAL TEST

Homogeneous isotropic turbulence is one of the classical cases, wieere th
dynamics and dispersion of particle laden flows can be studied. This leas be
done extensively using the Lagrangian formalism and encouragindisresw
insight have been obtained with such methods. Comparison of Lagrarayiécieo
tracking in decreasing homogeneous isotropic turbulefibevith experimental
measurements of particle dispersion in grid generated turbuleli¢eskiow
that essential features of the particle dynamics can be captured. Prejiminar
computations with a simplified Eulerian formalism of this test case gave
encouraging results'[]. In the case of tracer particles (small Stokes number
limit) Eulerian methods are well suited to describe the dynamigs [With
increasing Stokes number, the particle velocities become decorrelated with the
gaseous carrier-phase velocity. Inertia effects become importanteginelgation

97



occurs for Stokes numbers about unity. The subject of the study isfaheneot
only the development of an adequate numerical tool but to show the validitye of
Eulerian approach for Stokes numbers from the tracer [i§it— 0) to unity.

3.1. Initialization of the test case: the gaseous velocity field

The gaseous carrier phase is initialized by a divergence-free veloeity fi
obeying a Passot—Pouquet spectrum for the kinetic energy:

E(k)=C <ﬁ> ¢ 2K/ k), (18)
ke

Here k is the wavelength and. corresponds to the most energetic wavelength.
The initial gaseous solution is then numerically advanced over a chartctene
scale of the turbulence in order to establish a physical spectrum andtydiel
that is the solution of the Navier—Stokes equations.

The Reynolds numbeRe = «'l/v, based on the integral length scéland
u' is 18. The spatial resolutions of the Eulerian simulations areand 1283
equidistant nodes. After a non-dimensional timeto& 4.23 s, the Reynolds
number of the carrier phase is 14. This flow field is taken as the initial flow field
for the carrier phase for all test cases.

Length scales and velocities were made dimensionless by using the length scale
[ = 0.001 m and velocity scale = 347 m/s. The corresponding time scale is
t=2.8818 x 107 Cs.

3.2. Initialization of the test case: the dispersed phase velocity field

Several options exist to initialize the dispersed phase, although therendbes
exist a natural way for that. Here particles are considered equally ditstdb
throughout the computational domain when computation of the dispersed phas
is started. Special attention is taken for the initialization of the dispersed phase
velocity. Three principal possibilities exist:

1) dispersed phase velocity equals carrier phase velocity,
2) dispersed phase velocity equals zero,
3) dispersed phase velocity is partially correlated to the carrier velocity.

In the case of relaxation times, small compared to the characteristic time scales
of the carrier phase, the particles velocity field is close to the carrier pledsety
field. In this case it is physical to initialize the dispersed phase velocity field
with the gaseous velocity field and to initialize the RUE field with a value close
to zero. The RUE field can not be initialized with zero since shear viscosity an
RUE flux coefficients are directly linear in RUE. Here only the first initialization
method is considered. Furthermore, simulations are made in the unfavoaable ¢
of the Stokes numbéiSt = 7,,/T') close to unity, leading to maximal segregation
effects; herd’s = A/’ is the turnover time andl is the integral length scale of the
carrier phase.
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4. COMPUTATION OF THE LAGRANGIAN REFERENCE SOLUTION

The Lagrangian particle tracking method is a well understood tool for the
numerical investigation of particle-laden turbulence. In the case of Stikes
the particle coordinate and velocities are advanced in time with the following set o
differential equations:

0

(k) (k)
X\ =V. 19
9t i i ) ( )
0 (k) 1 (k) (k)
—V. = — i . 5 — . .

” Vi (u (X;V,t) -V, ) (20)

In realistic applications particle numbers are so large that it is not possiblecto tr
all the particles individually and particles are advanced as “numericaticfes
that are supposed to represent a large number of “physical” partlolesder not
to bias the result by such a procedure, here all particles are compuieidiradly.
Special care is taken to evaluate the gaseous velociy the particle location for
the drag force by using high-order interpolation methddp |

The spatial resolution of the gaseous phas&4$ and an average of0
particles are computed per gaseous node. This corresponds to a tatal®f
million individual particles. This high particle number ensures convergeen
averaged fields are computed from the discrete particle distribution. Eraged
fields are sensitive to the numerical procedure used. With the high nurfiber o
particles used, the error can be shown to be smaller3tiamy comparing different
averaging methods. The correlated velocity of the particles is calculated by a
filtering procedure, projecting the correlated velocities on the numericzlogr
the carrier phase. Initially, as for the Eulerian simulation, particle velocities ar
either initialized with the gaseous velocities or zero.

5. DYNAMICS OF DISPERSED TWO-PHASE FLOWS IN
HOMOGENEOUS ISOTROPIC TURBULENCE

Integral properties of decaying homogeneous isotropic turbulencebean
described by a simple set of ordinary differential equations of the intkgretic
energy and the dissipation of kinetic energy

1 v [ Ou; Ou;
a7 = g luw},  e=3 {axj o, } ; (21)
where 5 5 i
9 2__ 90
5 1T = 6 5 ¢ Cy Z (22)

andv is the kinematic viscosity.
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These equations can be obtained from the Navier—Stokes equations migh so
assumptions on the properties of the fldif] [ satisfied in incompressible decaying
homogeneous turbulence. Using the Lagrangian equations of particdpdrawith
Stokes drag (19), (20), a corresponding set of ordinary diftexieequations for the
fluid—particle correlation and the particle kinetic energy

N N
_ 1 (k) 4yp/ (k) o 1 (k)1 (k)
ap =5 D w(X OV =5 ViUV (23)
k=1 k=1
can be obtained for the dispersed phdsg [

9 a1

— Q= Aty — 205ap) » (24)
ot fp T;p 7 [ fp f@p]
a 2 1 2
— B =——[92¢% — ) 25
5 9 - 12¢, — app) (25)

Here vt corresponds to the turbulence time scale that governs the dissipation
of fluid—particle correlation. Equation (24) can then be used to calculate this
dissipative time scala posteriori

q
Th =~ e (26)
ardfr T 7, [pr - 2qf@p}

The time scale for the dissipation of the carrier phase = q]%/e and the
relaxation time of the particles, can then be compared to the dissipative time
scale of fluid—particle correlation. For comparison, the residual kinegcggn
is computed from the square of the difference between the filtered Lgigran
velocity and the individual particle velocity.

6. RESULTS AND DISCUSSION

Numerical computations are performed using the initialization procedure,
described in Section 3. The temporal development of the integral valukisédic
energies and fluid—particle correlation are presented in Fig. 2. Numeesalts
of the Eulerian computation (lines) are compared to the numerical results of the
Lagrangian reference computation (symbols). In the Lagrangian cotigyuthe
correlated kinetic energy is calculated using the correlated velocity. THeiRU
then calculated as the difference between the correlated kinetic eneltjysetotal
kinetic energy, obtained as the sum of kinetic energies of all the particiethel
Eulerian computation, the total kinetic energy of the partiq&'&s obtained from
the sum of the resolved kinetic ener@/and the RUBqIQ,. The open triangles give
the RUE, estimated by the values from the equilibrium formula (16). Initially RUE
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t, non-dimensional

Fig. 2. Time evolution of the fluid and particle and fluid—particlelogty correlations
in an homogeneous isotropic decaying two-phase turbujecamparison of results from
Lagrangian (symbols) and Eulerian (lines) simulations.

is zero since the particle velocity is identical to the carrier phase velocityhvene

by definition correlated. This shows that the Eulerian simulation is able to eaptur
the dynamics of the dispersed phase. In Fig. 3 the time scales from the Ruleria
simulations are compared. Initially the relaxation time of the particles (solid line)
is about half the dissipative time scale of the carrier phase (dashed linis). T
corresponds to the Stokes number of about 0.5. In the decreasing éoeoas
isotropic turbulence, the dissipative time scale increases slowly and thissttead

a decreasing Stokes number (about 0.3 at the end of the Eulerian computatio
The dissipative time scale of the fluid—particle correlation is initially close to the
dissipative time scale of the carrier phase; it decreases in time so as t@reseh
where itis about half the dissipative time scale of the carrier phase. Tieiesagith
theoretical consideration$®]. Figure 4 shows snapshots of number density and
RUM Energy in the Lagrangian and the Eulerian computation. The numbsitglen

in the Eulerian computation admits smaller variations than in the Lagrangian
computation due to the heuristically introduced bulk viscosity. This bulk viscosity
acts on the compressible component of the velocity and thus limits compressibility
effects. Therefore the particle number density is predicted to be moremriian

in the Lagrangian simulation. Random uncorrelated energy admits qualitatieely
same structures in the Eulerian and Lagrangian computation.
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Fig. 3. Comparison of the dissipative time scale of the carrier phaswith the relaxation
time of dragr,, and the dissipative time scale of fluid—particle correm'r%.
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Fig. 4. Comparison of the normalized droplet numbgy, ((72,,), a and b) and of the RUM
Energy 66,, c and d) in the Lagrangian (a, c, resolutidt?) and the Eulerian (b, d, resolution
128%) computation after about one particle relaxation time=(10.8 s) in the plane: = 0.
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The heuristically introduced bulk viscosity term tends to render a more umifor
spatial particle number distribution. Without this bulk viscosity term, calculations
can currently not be carried out: particle segregation and enstropionisetoo
large. Since the spatial average of the volume viscosity is zero, it doedfaot
the temporal evolution of the averaged kinetic energy of RUM of the partiq&s

Local instantaneous values &iﬁp may differ notably from the values obtained in
the Lagrangian simulation. An important remaining question is therefore related
to the subgrid model in the form of the bulk viscosity term. Higher spatial
resolutions should clarify this problem if the encountered difficulties dietee

to numerical resolution. However, it is not clear if the modelling of stresges b
Eq. (13) represents correctly the physics and if this is the origin of theusrnered
difficulties. This point is under current investigation with the strong suppbr
Lagrangian simulations.

7. CONCLUSION AND PROSPECT

The presented study shows the capacity of Eulerian formalism to capture the
dynamics of particles even in the vicinity of unity Stokes numbers. Simulations
were performed at very small turbulent Reynolds numbers since simulatitms
higher Reynolds numbers of the carrier phase showed deficiencies spéitial
resolutions of the dispersed phase. Therefore tests have to be ekterigher
Reynolds numbers and it would be interesting to develop a subgrid modilefor
dispersed phase. This would lead to large eddy simulations in an Eulenaa-fra
work which are very interesting for the unsteady computations of induapjaica-
tions with a high number of particles or droplets. Concerning dispersionureas
ments, it is interesting to extend the simulations by taking gravity into account
and to test whether the crossing trajectory effect is captured in suchularidh
framework.
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Lagrange’i ja Euleri meetodite vordlus osakeste
arvmodelleerimisel homogeense isotroopse kdduva
turbulentsi juhul

André Kaufmann, Jerome Helie, Olivier Simonin ja Thierryirdot

On kéasitletud otsese arvmodelleerimise lahendusmeetodit kahefaasilise dis-
persse Euler—Euleri vooluse juhul. On néidatud vajadust lilitada dispéaasi
momendi transpordivBrrandisse pingeliige ja esitatud lihthe mudel selle liikkme
maadramiseks. Dispersset faasi iseloomustavate suuruste nagu osakebse
tiheduse, makroskoopilise kiiruse ja pingetensori komponentide maéramine
vordlusarvutustega, kasutades osakeste jalgimiseks Lagrange'i libeletudtab
Euler—Euleri lahendusmeetodiga saadud tulemusi.
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