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Challenges for tensile stresses
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Abstract. This essay describes some interesting phenomena related to flexible (han
structures in nature and engineering. Despite of the seeming simplicity, the behaviour of
structures may be complicated due to non-linear effects.
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1. INTRODUCTION

Engineering designs start from the wish to construct certain machines, bl
ings, structures, and other useful things. Given the basic idea, the implemel
starts from the rather general assumptions. Two most important factors in desic
the loaded structural elements in engineering are the material properties fromr
side and the loading conditions from the other.

Keeping this simple arguing, the materials are brittle or ductile. The load
conditions may vary considerably but we still withess several rather firmly k
engineering solutions. The elements that should resist mostly the compressic
designed and built more solid. Structures made of concrete blocks are a |
example. Indeed, concrete resists well compression while tensile stresses
microcracks in concrete structures even at low loading rates. This is why ¢
reinforcement is used, because steel as a ductile material is well suited to 1
tension. So the slender steel bars reinforce the tensile zones in concrete beam
given a slender steel bar under compression along its axis, we immediately con
the stability problems. If, however, this bar is under tension only, its strength
be used up to the limit.

Such a rather naive presentation omits certainly many details, incluc
complex stress states, complex materials, etc. Nevertheless, one is clear — the
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certain structural elements well suited to work under tensile stresses. This ¢
considers some aspects of such elements.

The reason for discussing this fascinating problem is obvious — the leac
papers in this issue are devoted to the analysis of hanging roofs whose
elements are cables under tension. The long-time studies of these structures
been carried out under the supervision of Valdek Kulbd¢h The author of this
essay has been his student and it will be a pleasure to pay a tribute to the te:
The main idea to write these lines is to show that beside hanging roofs there are
other extremely interesting structures in engineering and nature that bear te
stresses. However, not everything is simple ...

2. BASIC MECHANICS

A thin elastic filament is a three-dimensional body with cross-secti
dimensions much smaller than its length. Such a model is widely used in explai
many technological processes like the kinking of telephone cables or descri
long molecular structures including proteins, DNA, and bacterial fibfgs Its
dynamics is governed by the well-known Kirchhoff equatiohg][ A filament
can also resist bending stresses and thus the conservation of motion and ai
momentum provide the governing equations — altogether six coupled non-lii
partial differential equations of the second order in time and arc-length (meas
along the filament). If, however, the rigidity of a filament is negligible, then t
model of a flexible string can be used. Again, there is a wide area of usag
strings, starting from piano strings to textile yarn manufacturing processes
reinforcements of composite materials or to space structures (cf. ref4jp [
A special case is a helical fibre or helix which also has many applications: he
cables and ropes, models of DNA molecules, audio tapes, €tf. The analogy
with vortex filaments in fluids is obviou$], So beside cables, used for hangin
structures in civil engineering, similar elements are of interest in many fields
science and in many applications.

A flexible string of mass density per unit length can be described by th
equation of motionT]

OR(s,t) 0 (T(s,t) OR(s,t)
TS _85<A(s,t) ds )

(1)

whereR (s, t) is the position vector and is the coordinate along the string. The
relation between the tension for€eand the stretch of the fibré should be given
through a constitutive equation. This is one possible source of non-linearity w
another source is geometry — the possible large deflections of the string (or ht
The latter is usually more important, influencing the behaviour of a string eve
low and moderate loadings.

Here we give some examples of fascinating dynamical phenomena in stri
One is the solitonic behaviour of waves propagating in a spacial helix. The posi
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vector R(s,t) in Eg. (1) can then be decomposed into two — the longitudir
componentk, (s, t) and the second componeRi(s, t), lying in the cross-section
of the helix. Leaving aside mathematics (for details Sk fhe spatial shape of
the deformed helix can be calculated. The stretch within the helix, projected ¢
the x-axis, is a soliton as shown in Fig. 1. The speed of the soliton depends he
the initial geometry.

In principle, the general rotation of the helix can also be easily introduced.
interesting problem is whether under certain conditions a chaotic solution exis
not. Indeed, the problem is non-linear, so the prerequisites for a chaotic regim
satisfied. It has been showH fhat statically such a helix can indeed take chaot
or quasiperiodic forms. Such a deformed shape is shown in Fig. 2. An interes
application of helices is to use them in composite materials for reinforcerient [

(a)

Fig. 1. Soliton in a helix: (a) deformed shape; (b) non-dimensional stretdbng thex-axis
(after Krylov and Rosenau]).

Fig. 2. Three-dimensional deformed shape of a helix (after Davies and Mgpn [
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Fig. 3. Loop solitons for three successive time moments (from left to right).

The second example concerns the existence of the so-called loop solito
loose strings. The governing equation is then the followffjg [

0*w i dz iz 0*w/0x? 0 @
oot oM\ ds ) 922 | (1+ (ow/Ox)2)32]

wherew(z,t) is the transverse motion in a straight half-finjte > 0) string
(elastica) subject to an excitation at the end- 0, ands is the arc length along
the solution curve. This equation has a solution in the form of a loop propaga
along the string with an amplitude-dependent velocity (Fig. 3). These loops
of solitary character, i.e. they propagate without changing their shape. This
remarkable property of waves in non-linear structures due to the balanced el
of non-linearity and dispersion. In some sense such waves are comparable
particles that justifies their common name — solitons (see the seminal p&per
The loop solitons have a remarkable property: the smaller the amplitude, the I
the velocity; i.e. the smaller loop overtakes the larger one (Fig. 3). On the cont
the celebrated Korteweg-de Vries solitod$] poehave vice versa — the larger th
amplitude, the larger the velocity; i.e. larger solitons overtake the smaller o
Loop solitons are analysed in detail i].

We have agreed to forget about compression but what happens if beside te
stresses also torques are applied to strings? The last example described |
here is a case of a filament which is loaded by both tension and twist.
phenomenon that can then be observed is cahedtwist to writhe conversion
[2] which is emphasized by generation of supercoiling (additional loops). Si
an experiment can easily be carried out manually by twisting the end of a rul
tape or a telephone cord. It can then be clearly observed that such a loading ir
results in strange additional loops called snarls. This phenomenon has remar
consequences not only for structural elements but also in biological context.
shown in B, it concerns the behaviour of tendrils in climbing plants (grow
and handedness of loops or snarls) and also the self-assembly of certain bax
filaments.

3. STRINGS IN NATURE

Much in engineering is learned from natural objects. In our context of ha
ing structures, one should look how spiders spin their webs made of threac
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biological origin. The webs are usually either vertical or horizontal, sheet-|
and rather symmetric. Their shapes are really fantastically beautiful. The r
“classical” shape is depicted in Fig. 4. In Fig. 5a a horizontal web is sho
which really resembles a hanging roof. What is remarkable from the engin
ing viewpoint is the flatness of the structure. Another spatial “fishing-net” — ty
structure is shown in Fig. 5b. Actually, keeping in mind the famous hang
membranes of Frey Otto, the German engineer, nature surely overpasse
technological ideas. Last, a system of webs shown in Fig. 6, characterize:
“fantasy” of their creators. The material of webs — the spider silk — has remarki
properties [*]. One should mention first that it has a history of manufacturil
about 400 million years'}]; so the web-engineering is really rather sophisticate
Spider dragline silks are exceptionally strong and extensible. The strength o
silkis about 1.1 GPa compared with 1.3 GPa of a typical steel but its relative der
is only 1.39 gém? compared with 7.89 gi? of steel. It is of interest, however,
to compare the properties of spider dragline silk with those of man-made fil
of Kevlar. According to %], the comparative data of silk vs Kevlar yarn are th
following: silk (Nephila eduli3— diameteB.35 + 0.63m, max strair).39 +0.08,
max stresd.15 £+ 0.20 GPa, elasticity modulug.9 4+ 1.8 GPa; Kevlar 81 high-
tenacity yarn — diameter2;m, max strain 0.05, max stress 3.6 GPa, elastic
modulus 90 GPa. The conclusion frort] sounds: “Thus Kevlar is 3 times
stronger but spider silk is 5 times tougher because it is 8 times more extendibl

Fig. 4. The spiral web of Araneus diadematus: Fig. 5. (& horizonta web of Uloborus;
1 — the frame; 2 — the rays; 3 — centra part; (b) three-dimensional spacial web of Theridio-
4,5 — spiral draglines (after [9]). soma gemmosum (after [%]).
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Fig. 6. A web of webs (after °]).

Knowing the advanced spinning “technology” of spiders, the engineer
technology can much learn how to produce fibres with similar properti
Remarkable in the natural “technology” are the low temperature, low energy
and low spinning speeds. The webs are quite resistant even in our climate
“designed” in an optimal way, saying nothing about the beauty.

Certainly the spider's webs are not the only examples from natt
Contemporary science looks more and more to smaller scales, that is to mole
structures. Mentioned already in the previous section were the DNA chains
helices. The excitations along those helices are modelled using the soliton con
for example, the so-called Davydov solitons are thought to be responsible
transferring energy along the bonded spines of a héfik [While this model
is effectively one-dimensional and corresponds to an intuitive understanding
string or a helix, then peptide chains in general terms are at least two-dimens
['"]. Actually the theory described in'] is a remarkable example how idea
of continuum mechanics are able to describe complicated biological structt
here — the propagation of waves along chains of molecules.
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4. DYNAMICAL HAZARDS

As noted above, the structural elements designed to resist tensile stresses ¢
jeopardized by the loss of stability characteristic to structures under compres
However, this does not mean that everything is much simpler. There is anc
physical phenomenon related to the high flexibility of such structures — dut
aeroelastic excitations (wind loading) flexible structures may maintain large-s
oscillations. Actually there are several mechanisms for such a behaviour
unimodal galloping, bimodal flutter, and vortex resonanég [It is argued that
the famous failure of the Tacoma Narrows suspension bridge was caused ne
by such effects because the designers had overlooked the existence of an ur
limit cycle during certain excitations. As an example of such a modelling, let
consider the behaviour of a non-linear aeroelastic oscillatdr A suitable model
consists of a square prism fixed by a spring and a dashpot to a foundation sc
the structure can move vertically (axjss directed downwards). Let the wind blow
with a velocity V' past the prism parallel to axis The equation of motion is then

[18];

mij + i+ ky = 5pV2a [A1(/V) ~ As(/V)+ As(@/V) ~ AxG/V)T],

(3)
where the right-hand side represents the highly non-linear aerodynamic fc
Further,m, r, k, p, a are the physical constants (s the frontal area of the prism)
and Ay, ..., A; are empirical constants. Such a simple model structure underg
the Hopf bifurcation at a certain value Bfand at higher values of wind velocities
there are three limit cycles, the middle one of which is unstable. Itis clear that if
structure is loaded within the domain of the attraction of the unstable limit cy«
then the large-amplitude oscillations will be generated even at moderate excitat

By changing the cross-sections, the coefficients of the model (3) will
changed but the phenomenon is the same. This example could serve as a |
for ice-coated power cable$’]. Modelling of the atmospheric icing is of interes
in many areas including civil engineering and air industry. From the viewpoint
structural design it involves the determination of ice loads. For example, the r
on a 22 kV power cable could lead to the ice load as high as about 300 kKYj/m
The increase of the cross-section with the growth of mass changes then dramat
the dynamical behaviour of such structures and may cause their failure with se
consequences.

5. FINAL REMARKS

Hanging structures are economical and beautiful. But one should know ¢
about their behaviour because their seeming simplicity may be deceptive. Trul
arguing may start from understanding that it is not only the strength of matel
and the cross-sections of structural elements which are decisive in design, the
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of stability rules sometimes the situation. Then clearly the elements that are i
to resist only tensile stresses could be used if possible in order to get rid of stal
problems. One may be tempted to simplify the design rules but other haz
should not be forgotten. Due to high flexibility, flutter or galloping may occ
at dynamical loadings. Looking for the reasons of such behaviour, we come tc
concept of non-linearity. Non-linearity is a very important notion in contempor:
science, meaning that the processes are not additive like they are within
framework of linear theories. Even more, non-linearity gives rise to many nc
physical phenomena including chaos (cf., for example, a large number of refere
on that topic in [!]). This is also the case of hanging structures, possessing
richness of natural and technological world. It also means that despite of
seeming simplicity of hanging structures, their analysis should be carried out"
a care not neglecting the non-linear effects (cf. non-linear equations (1)—(3)
['D.
It addition, one should not forget that natural and technological proble
are interwoven into a complicated system where the analogies and links bety
phenomena could really be stunning. It is not by chance that examples in this €
are mostly drawn from physics in order to demonstrate how closely enginee
problems are related to other physical phenomena. It is not difficult, for exam
to link the design problems of hanging roofs with spider's webs and the desig
cables with modelling of icing and icicles.
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Valjakutse tdmbepingetele
Juri Engelbrecht

Essees on kirjeldatud mitmeid flilsikalisi probleeme, mis on seotud ri

konstruktsioonidega nii looduses kui ka inseneriasjanduses. Hoolimata nail
lihtsusest voib selliste tdmbele tootavate konstruktsioonide kaitumine olla ke
line, seda eeskatt mittelineaarsete efektide tottu.
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