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Challenges for tensile stresses
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Abstract. This essay describes some interesting phenomena related to flexible (hanging)
structures in nature and engineering. Despite of the seeming simplicity, the behaviour of such
structures may be complicated due to non-linear effects.
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1. INTRODUCTION

Engineering designs start from the wish to construct certain machines, build-
ings, structures, and other useful things. Given the basic idea, the implementing
starts from the rather general assumptions. Two most important factors in designing
the loaded structural elements in engineering are the material properties from one
side and the loading conditions from the other.

Keeping this simple arguing, the materials are brittle or ductile. The loading
conditions may vary considerably but we still witness several rather firmly kept
engineering solutions. The elements that should resist mostly the compression are
designed and built more solid. Structures made of concrete blocks are a good
example. Indeed, concrete resists well compression while tensile stresses cause
microcracks in concrete structures even at low loading rates. This is why steel
reinforcement is used, because steel as a ductile material is well suited to resist
tension. So the slender steel bars reinforce the tensile zones in concrete beams. But
given a slender steel bar under compression along its axis, we immediately confront
the stability problems. If, however, this bar is under tension only, its strength can
be used up to the limit.

Such a rather naive presentation omits certainly many details, including
complex stress states, complex materials, etc. Nevertheless, one is clear – there are
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certain structural elements well suited to work under tensile stresses. This essay
considers some aspects of such elements.

The reason for discussing this fascinating problem is obvious – the leading
papers in this issue are devoted to the analysis of hanging roofs whose main
elements are cables under tension. The long-time studies of these structures have
been carried out under the supervision of Valdek Kulbach [1]. The author of this
essay has been his student and it will be a pleasure to pay a tribute to the teacher.
The main idea to write these lines is to show that beside hanging roofs there are also
other extremely interesting structures in engineering and nature that bear tensile
stresses. However, not everything is simple ...

2. BASIC MECHANICS

A thin elastic filament is a three-dimensional body with cross-section
dimensions much smaller than its length. Such a model is widely used in explaining
many technological processes like the kinking of telephone cables or describing
long molecular structures including proteins, DNA, and bacterial fibres [2]. Its
dynamics is governed by the well-known Kirchhoff equations [2,3]. A filament
can also resist bending stresses and thus the conservation of motion and angular
momentum provide the governing equations – altogether six coupled non-linear
partial differential equations of the second order in time and arc-length (measured
along the filament). If, however, the rigidity of a filament is negligible, then the
model of a flexible string can be used. Again, there is a wide area of usage of
strings, starting from piano strings to textile yarn manufacturing processes and
reinforcements of composite materials or to space structures (cf. ref. in [2,4]).
A special case is a helical fibre or helix which also has many applications: helical
cables and ropes, models of DNA molecules, audio tapes, etc. [4,5]. The analogy
with vortex filaments in fluids is obvious [6]. So beside cables, used for hanging
structures in civil engineering, similar elements are of interest in many fields of
science and in many applications.

A flexible string of mass densityρ per unit length can be described by the
equation of motion [7]

ρ
∂2R(s, t)

∂t2
=

∂

∂s

(
T (s, t)
A(s, t)

∂R(s, t)
∂s

)
, (1)

whereR(s, t) is the position vector ands is the coordinate along the string. The
relation between the tension forceT and the stretch of the fibreA should be given
through a constitutive equation. This is one possible source of non-linearity while
another source is geometry – the possible large deflections of the string (or helix).
The latter is usually more important, influencing the behaviour of a string even at
low and moderate loadings.

Here we give some examples of fascinating dynamical phenomena in strings.
One is the solitonic behaviour of waves propagating in a spacial helix. The position
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vector R(s, t) in Eq. (1) can then be decomposed into two – the longitudinal
componentRx(s, t) and the second componentRt(s, t), lying in the cross-section
of the helix. Leaving aside mathematics (for details see [7]), the spatial shape of
the deformed helix can be calculated. The stretch within the helix, projected onto
the x-axis, is a soliton as shown in Fig. 1. The speed of the soliton depends here on
the initial geometry.

In principle, the general rotation of the helix can also be easily introduced. An
interesting problem is whether under certain conditions a chaotic solution exists or
not. Indeed, the problem is non-linear, so the prerequisites for a chaotic regime are
satisfied. It has been shown [8] that statically such a helix can indeed take chaotic
or quasiperiodic forms. Such a deformed shape is shown in Fig. 2. An interesting
application of helices is to use them in composite materials for reinforcement [5].

Fig. 1. Soliton in a helix: (a) deformed shape; (b) non-dimensional stretchε along thex-axis
(after Krylov and Rosenau [7]).

Fig. 2. Three-dimensional deformed shape of a helix (after Davies and Moon [8]).
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Fig. 3. Loop solitons for three successive time moments (from left to right).

The second example concerns the existence of the so-called loop solitons in
loose strings. The governing equation is then the following [9]:

∂2w

∂x∂t
+ sign

(
dx

ds

)
∂2

∂x2

[
∂2w/∂x2

(1 + (∂w/∂x)2)3/2

]
= 0, (2)

wherew(x, t) is the transverse motion in a straight half-finite(x > 0) string
(elastica) subject to an excitation at the endx = 0, ands is the arc length along
the solution curve. This equation has a solution in the form of a loop propagating
along the string with an amplitude-dependent velocity (Fig. 3). These loops are
of solitary character, i.e. they propagate without changing their shape. This is a
remarkable property of waves in non-linear structures due to the balanced effects
of non-linearity and dispersion. In some sense such waves are comparable with
particles that justifies their common name – solitons (see the seminal paper [10]).
The loop solitons have a remarkable property: the smaller the amplitude, the larger
the velocity; i.e. the smaller loop overtakes the larger one (Fig. 3). On the contrary,
the celebrated Korteweg-de Vries solitons [11] behave vice versa – the larger the
amplitude, the larger the velocity; i.e. larger solitons overtake the smaller ones.
Loop solitons are analysed in detail in [12].

We have agreed to forget about compression but what happens if beside tensile
stresses also torques are applied to strings? The last example described briefly
here is a case of a filament which is loaded by both tension and twist. The
phenomenon that can then be observed is calledthe twist to writhe conversion
[2] which is emphasized by generation of supercoiling (additional loops). Such
an experiment can easily be carried out manually by twisting the end of a rubber
tape or a telephone cord. It can then be clearly observed that such a loading indeed
results in strange additional loops called snarls. This phenomenon has remarkable
consequences not only for structural elements but also in biological context. As
shown in [2], it concerns the behaviour of tendrils in climbing plants (growth
and handedness of loops or snarls) and also the self-assembly of certain bacterial
filaments.

3. STRINGS IN NATURE

Much in engineering is learned from natural objects. In our context of hang-
ing structures, one should look how spiders spin their webs made of threads of
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biological origin. The webs are usually either vertical or horizontal, sheet-like
and rather symmetric. Their shapes are really fantastically beautiful. The most
“classical” shape is depicted in Fig. 4. In Fig. 5a a horizontal web is shown
which really resembles a hanging roof. What is remarkable from the engineer-
ing viewpoint is the flatness of the structure. Another spatial “fishing-net” – type
structure is shown in Fig. 5b. Actually, keeping in mind the famous hanging
membranes of Frey Otto, the German engineer, nature surely overpasses the
technological ideas. Last, a system of webs shown in Fig. 6, characterizes the
“fantasy” of their creators. The material of webs – the spider silk – has remarkable
properties [14]. One should mention first that it has a history of manufacturing
about 400 million years [15]; so the web-engineering is really rather sophisticated.
Spider dragline silks are exceptionally strong and extensible. The strength of the
silk is about 1.1 GPa compared with 1.3 GPa of a typical steel but its relative density
is only 1.39 g/cm3 compared with 7.89 g/cm3 of steel. It is of interest, however,
to compare the properties of spider dragline silk with those of man-made fibres
of Kevlar. According to [14], the comparative data of silk vs Kevlar yarn are the
following: silk (Nephila edulis) – diameter3.35±0.63µm, max strain0.39±0.08,
max stress1.15 ± 0.20 GPa, elasticity modulus7.9 ± 1.8 GPa; Kevlar 81 high-
tenacity yarn – diameter12µm, max strain 0.05, max stress 3.6 GPa, elasticity
modulus 90 GPa. The conclusion from [14] sounds: “Thus Kevlar is 3 times
stronger but spider silk is 5 times tougher because it is 8 times more extendible”.
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Fig. 4. The spiral web of Araneus diadematus:  
1 – the frame; 2 – the rays; 3 – central part;  
4, 5 – spiral draglines (after [13]).  

Fig. 5. (a) horizontal web of Uloborus;  
(b) three-dimensional spacial web of Theridio-
soma gemmosum (after [13]).  

 
 



Fig. 6. A web of webs (after [13]).

Knowing the advanced spinning “technology” of spiders, the engineering
technology can much learn how to produce fibres with similar properties.
Remarkable in the natural “technology” are the low temperature, low energy cost
and low spinning speeds. The webs are quite resistant even in our climate and
“designed” in an optimal way, saying nothing about the beauty.

Certainly the spider’s webs are not the only examples from nature.
Contemporary science looks more and more to smaller scales, that is to molecular
structures. Mentioned already in the previous section were the DNA chains like
helices. The excitations along those helices are modelled using the soliton concept;
for example, the so-called Davydov solitons are thought to be responsible for
transferring energy along the bonded spines of a helix [16]. While this model
is effectively one-dimensional and corresponds to an intuitive understanding of a
string or a helix, then peptide chains in general terms are at least two-dimensional
[17]. Actually the theory described in [17] is a remarkable example how ideas
of continuum mechanics are able to describe complicated biological structures,
here – the propagation of waves along chains of molecules.
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4. DYNAMICAL HAZARDS

As noted above, the structural elements designed to resist tensile stresses are not
jeopardized by the loss of stability characteristic to structures under compression.
However, this does not mean that everything is much simpler. There is another
physical phenomenon related to the high flexibility of such structures – during
aeroelastic excitations (wind loading) flexible structures may maintain large-scale
oscillations. Actually there are several mechanisms for such a behaviour like
unimodal galloping, bimodal flutter, and vortex resonance [18]. It is argued that
the famous failure of the Tacoma Narrows suspension bridge was caused namely
by such effects because the designers had overlooked the existence of an unstable
limit cycle during certain excitations. As an example of such a modelling, let us
consider the behaviour of a non-linear aeroelastic oscillator [18]. A suitable model
consists of a square prism fixed by a spring and a dashpot to a foundation so that
the structure can move vertically (axisy is directed downwards). Let the wind blow
with a velocityV past the prism parallel to axisx. The equation of motion is then
[18];

mÿ + rẏ + ky =
1
2
ρV 2a

[
A1(ẏ/V )−A3(ẏ/V )3+ A5(ẏ/V )5 −A7(ẏ/V )7

]
,

(3)
where the right-hand side represents the highly non-linear aerodynamic force.
Further,m, r, k, ρ, a are the physical constants (a is the frontal area of the prism)
andA1, ..., A7 are empirical constants. Such a simple model structure undergoes
the Hopf bifurcation at a certain value ofV and at higher values of wind velocities
there are three limit cycles, the middle one of which is unstable. It is clear that if this
structure is loaded within the domain of the attraction of the unstable limit cycle,
then the large-amplitude oscillations will be generated even at moderate excitations.

By changing the cross-sections, the coefficients of the model (3) will be
changed but the phenomenon is the same. This example could serve as a model
for ice-coated power cables [19]. Modelling of the atmospheric icing is of interest
in many areas including civil engineering and air industry. From the viewpoint of
structural design it involves the determination of ice loads. For example, the rime
on a 22 kV power cable could lead to the ice load as high as about 300 kg/m [19].
The increase of the cross-section with the growth of mass changes then dramatically
the dynamical behaviour of such structures and may cause their failure with serious
consequences.

5. FINAL REMARKS

Hanging structures are economical and beautiful. But one should know a lot
about their behaviour because their seeming simplicity may be deceptive. Truly the
arguing may start from understanding that it is not only the strength of materials
and the cross-sections of structural elements which are decisive in design, the loss
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of stability rules sometimes the situation. Then clearly the elements that are meant
to resist only tensile stresses could be used if possible in order to get rid of stability
problems. One may be tempted to simplify the design rules but other hazards
should not be forgotten. Due to high flexibility, flutter or galloping may occur
at dynamical loadings. Looking for the reasons of such behaviour, we come to the
concept of non-linearity. Non-linearity is a very important notion in contemporary
science, meaning that the processes are not additive like they are within the
framework of linear theories. Even more, non-linearity gives rise to many novel
physical phenomena including chaos (cf., for example, a large number of references
on that topic in [11]). This is also the case of hanging structures, possessing the
richness of natural and technological world. It also means that despite of the
seeming simplicity of hanging structures, their analysis should be carried out with
a care not neglecting the non-linear effects (cf. non-linear equations (1)–(3) and
[1]).

It addition, one should not forget that natural and technological problems
are interwoven into a complicated system where the analogies and links between
phenomena could really be stunning. It is not by chance that examples in this essay
are mostly drawn from physics in order to demonstrate how closely engineering
problems are related to other physical phenomena. It is not difficult, for example,
to link the design problems of hanging roofs with spider’s webs and the design of
cables with modelling of icing and icicles.
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Väljakutse tõmbepingetele
Jüri Engelbrecht

Essees on kirjeldatud mitmeid füüsikalisi probleeme, mis on seotud ripp-
konstruktsioonidega nii looduses kui ka inseneriasjanduses. Hoolimata näilisest
lihtsusest võib selliste tõmbele töötavate konstruktsioonide käitumine olla keeru-
line, seda eeskätt mittelineaarsete efektide tõttu.
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