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Abstract. In the calculation of suspension bridges, the main problem is the geometrically non-
linear behaviour of the cable. Linear methods of analysis are suitable only for very small spans. A 
geometrically non-linear continuous model is especially useful for classical loading cases as for the 
uniformly distributed load on the whole or half span. However, traffic generates both concentrated 
and uniformly distributed loads. The discrete model of a suspension bridge allows one to apply all 
kinds of loads, such as the distributed and the concentrated ones. In this paper, application of both 
discrete and continuous models for the calculation of the suspension bridges is considered. Linear 
elastic strain-stress dependence of the material and absence of the inclination of hangers is 
assumed. Hanger elongation may be taken into account. Some comparative numerical examples are 
presented. 
 
Key words: suspension bridge, cable systems, continuous modelling, discrete modelling, 
geometric non-linearity, girder-stiffened structures. 

 
 

1. INTRODUCTION 
 
Classical treatment of suspension bridges is presented in [1,2]. A generalized 

method of continuous modelling of different prestressed cable structures was 
proposed in [3–5]. It includes plane structures [3,5] and spatial networks [4] and 
proceeds from geometrically non-linear equilibrium conditions and equations of 
deformation compatibility. A peculiarity of this method is immediate inserting of 
displacements of cable supports into the generalized equations of deformation 
compatibility. 

Recent publications in the field of suspension bridges consider mainly the 
wind-induced dynamic processes and specific problems of the design of bridge 
elements [6]. A thorough review of literature in this field is given in the hand-
book [7]. However, in [7] only linear models have been considered. More recent 
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papers on suspension bridges consider application of the standard finite element 
method [8,9]. 

In this paper the analysis of the suspension bridges is carried out using non-
linear equilibrium conditions and generalized equations of deformation 
compatibility, taking into account the actual boundary conditions. Discrete and 
continuous calculation models are used in parallel. 

 
 

2. DISCRETE  MODEL  FOR  AN  ELASTIC  CABLE 

2.1. Initial  form  of  the  cable 
 
Under uniformly distributed load a cable takes parabolic form. In reality the 

cable is loaded by concentrated forces. Therefore it takes the form of a string 
polygon. The cable may be regarded as a geometrically non-linear rod without 
bending stiffness. The nodes of the polygon are on a parabola only if applied 
forces are equal and equidistant. The initial state of equilibrium of a cable, 
loaded by vertical concentrated loads, is shown in Fig. 1. 

From the equilibrium considerations we may write for every node 
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where 0H  is the initial horizontal force in the cable, ,,1 ii zz −  and 1+iz  are the 
initial vertical coordinates of the nodes, and iF ,0  is the initial external force at the 
node .i  

From Eq. (1) we have 
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Fig. 1. Discrete scheme of a cable element in the state of equilibrium. 

 

a

H

z
z

i-

i+z
i

0
F i-

i- a i

i+F 0H

10,

10,

1

1

1 F0, i

 

 
 
 



 

 123 

In case of equidistant vertical loads, Eq. (2) takes the form 
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Equations (2) and (3) give the ordinates of the string polygon if the horizontal 
force 0H  is known. When the supporting points of the cable are on the same 
level ),( 11 += nzz  then 
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is the vertical reaction from the initial loads iF ,0  and l  is the length of the 
horizontal projection of the cable. 

For a cable with supporting nodes on different levels we have 
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The initial form of the string polygon is described by three coordinates 21, zz , 
and 1+nz . 

 
2.2. The  loaded  cable 

 
By the action of the additional loads iF∆  (Fig. 2), the equilibrium equation 

for the node i  is expressed as 
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where ,,1 ii ww −  and 1+iw  are vertical displacements, H  is the cable force from 
temporary and initial loads, and .,0 iii FFF ∆+=  

From Eq. (6), the vertical displacement can be expressed as 
 

( ) ( ) .
1

1
11

1
1

1
1

1









+−+−++

+
= +−

−
+

−
−

−

H

aF
zzzz

a

a
w

a

a
w

a

a
w ii

iiii
i

i
i

i

i
i

i

i
i       (7) 



 

 124 

F

ai-

F

i-
i-

z
i-

0,F

i-

i-u

iz

a i

F

u i

i
wi

F0, i

z i
+

i+
w

u i+

i+F

i+0,

1

1

1

1

1

1

1

w
1

1

1 1

 

Fig. 2. Deformation of the cable under additional load. 
 

 
There are two unknown parameters in Eq. (7), iw  and .H  Thus we need an 

additional equation for calculating them. For this purpose we use the equality of 
the relative elongation of the cable iε  [3] expressed through node displacements 
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and from the condition of linear deformation 
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where EA is the stiffness of the cable in tension (E – elasticity modulus, A –
 cross-section of the cable). 

Taking into account Eqs. (8) and (9), this condition may be presented as 
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Horizontal displacements iu  of the internal nodes may be eliminated by 
summation of the equations of deformation compatibility (10). Then, since 
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we may write Eq. (10) in the form 
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where 1u  and 1+nu  are displacements of the supports. 
Solution of the system of non-linear equations (6) and (12) permits 

calculation of H  and all the displacements iw  from the initial cable form and 
boundary conditions for 1u  and .1+nu  

 
2.3. Discrete  model  of  an  elastic  cable  with  the  stiffening  girder 

 
The scheme of a girder-stiffened suspension bridge calculation model is 

presented in Fig. 3. The initial vertical load iF ,0  is fully balanced by the cable 
and prestresses it. The force 0H  can be calculated from Eqs. (4) or (5). Part of 
the additional load P  is balanced by the cable and the rest of it by the stiffening 
girder. The equation that describes the deflection of the girder can be written as 
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where bb IE  is the rigidity of the stiffening girder in bending, 1w  is the vertical 
displacement, and 1ϕ  is the angle of rotation of the first cross section of the 
girder, ,,,j lk cba  and ld  are the coordinates of the points of application of the 
forces, and )(xH  is the Heaviside function. 

Equation (13) can be used for calculating the deflection from the sum of 
applied external concentrated moments, forces ,kF  and from the uniformly 
distributed load .lp  

In the case of vertical pylons, the horizontal displacements of the supporting 
nodes of the anchor cable may be presented as 
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where b2  is the span and α  is the angle of inclination of the anchor cable. 
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Fig. 3. A suspension bridge model with vertical pylons and straight anchor cables. 
 
 

Using Eq. (13), we can write for every hanger joint and the end cross-section 
of the girder 
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where iF  is the internal force in the hangers and AV  is the vertical support 
reaction. 

Now we have n  linear equations for calculating ,iF  but there are 2+n  
unknown parameters: ,,, A21 FFFF n�  and .1ϕ  An additional equation can be 
written, using the moment equilibrium condition upon the end cross-section of 
the girder, as follows: 
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where M  is the moment of the external forces at the end of the girder. Thus 
with the system of linear equations (15) and (16) it is possible to calculate the 
internal forces iF  in the hangers if the displacements iw  are known. 

Now we can construct an iteration process for calculating the displacements 
,iw  the cable force ,H  and the internal forces in hangers iF  as follows: 
1) calculation of the prestressing (initial) forces in the cable from Eqs.  

(2)–(6); the initial load 0F  consists of the weight of the cable and of the part of 
the weight of the deck structure of the bridge; 

2) estimation of the initial displacements of the stiffening girder ;0,iw  
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3) from the system of linear equations (15) and (16), calculation of the 
internal forces iF  under action of the additional load ;iP  

4) calculation of the vertical displacements of the cable from Eqs. (7), (12), 
and (14); 

5) comparison of the vertical displacements of the stiffening girder and the 
cable; if they differ more than permissible then new stiffening girder displace-
ments are to be calculated and the process is to be repeated starting from point 3 
until the whole process converges; 

6) the calculation process is finished when the vertical displacements of the 
cable and the stiffening girder are equal; then the final values of the cable force 

,H  of the internal forces of hangers ,iF  and the vertical displacements of the 
cable and of the girder are determined. The internal forces in the stiffening girder 
can be calculated as in a simple beam. 

 
 

3. CONTINUOUS  MODEL 

3.1. Basic  equations 
 
Equilibrium condition for a continuous girder-stiffened cable structure may 

be presented as follows [3] 
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where w  is the deflection function and p  is the vertical distributed load. 
The initial form of the cable is usually a parabola (Fig. 4) 
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where a  is the half-span and f  the sag of the cable. When assembling the 
stiffening girder by successive lifting and suspending its mounting units to the 
cable and connecting them to each other, the initial load of the cable 0p  consists 
of the weight of the cable and the girder together. Corresponding horizontal 
force of the cable is 
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The compatibility condition of the relative elongation of the cable may be 
expressed as a condition of equality of geometrical and elastic deformations 
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Fig. 4. Continuous model of a suspension bridge with straight anchor cables. 
 
 
where EA is rigity of the cable in tension and u  is horizontal displacement. To 
eliminate the displacement ,u  we have to integrate Eq. (20) over the cable span. 
The unknowns w  and H  are determined by Eqs. (17) and (20). 

 
3.2. The  structure  with  straight  anchor  cables 

 
For the displacement of the cable support under action of the anchor cable, 

we may write 
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Using boundary conditions, after integration of Eqs. (17) and (20) we obtain 
exact expression for 21

bb )( HIE  in a complicated transcendental form. On the 
other hand, we may approximate the cable deflection by a trigonometric function 
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where 0w  is the deflection of the central point of the cable. Using Eqs. (17) and 
(20) we obtain with Galjorkin procedures, after some simplifications, a cubic 
equation for the relative deflection fw00 =ζ  
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and for the cable force 
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Here Φ= 0
*
0 Hp  and )2(2* Φ= fap ρ  are parameters of the initial and 

additional loads, respectively; )()1(4 2
bb EAfIE ϑκρ ++=  is parameter of 

rigidity of the stiffening girder, )]1(3[2 22 ϑκ ++= aEAf-  is the rigidity factor 
of the cable, 4422 2,12 afaf +=κ  is a geometrical factor and 

)cos(2 3
aa αϑ aAEEAb=  is the factor of deformatibility of the anchor cable. 

For the case of half-span loading of the bridge by a live load, it is useful to 
divide the total load into symmetrical )( sp  and antisymmetrical )( up  parts and 
to make the analysis in two steps. When calculating displacements and inner 
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forces for the antisymmetrical load, new geometrical and statical parameters are to 
be used. The deflection function for the antisymmetrical load is approximated as 
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The deflection parameter of the structure may be obtained from the equation 
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3.3. Suspension  bridge  with  loaded  anchor  cables 

 
In case of a symmetrical bridge with loaded anchor cables (Fig. 5.), the 

condition of equilibrium (17) and the equation of deformation compatibility (20) 
are to be applied to the middle span and to anchor spans as well. The boundary 
conditions for the connecting point of cables consist of the equality of horizontal 
cable forces both before and after loading and of the equality of horizontal 
displacements. For horizontal cable forces before and after additional loading we 
may write 
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where index 1 indicates the loaded anchor cable and 111 fw=ζ  is relative 
deflection parameter of it. From Eq. (27) we obtain 
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Equation (28) brings us to the equality 
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Now we may write the condition of equality of displacements of the upper 
end of the pylon, determined from the  middle span and from the side span of the  
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Fig. 5. Suspension bridge with loaded anchor cables. 
 

 

cable, in the form which enables us to calculate relative displacement of the 
cable in the middle span of the structure 
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After determination of the relative deflection 0ζ , we can calculate the 
corresponding deflection of the anchor span 1ζ  from Eq. (30). Horizontal cable 
force may be calculated as 
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4. NUMERICAL  EXAMPLES 
 
Let us consider suspension bridges with the parameters, used for provisional 

design of the bridge from the Estonian mainland to the Saaremaa Island 
(Table 1). 

 
Table 1. Parameters of the suspension bridges 

 
Span, m 600 780 960 1080 1200 
Sag of the cable, m 75 97.5 120 135 150 
Side span, m 250 325 400 450 500 
Moment of inertia of the stiffening girder Ib , × 104 cm4 1269 2488 2964 4524 5896 
Young’s modulus of the stiffening girder Eb , GPa  210 210 210 210 210 
Cross-section area of the cable A, cm2 768 1092 1458 1738 2008 
Young’s modulus of the cable E, GPa  170 170 170 170 170 
Initial whole span load p0, kN/m 30.4 38.2 43.3 50.0 54.8 
Additional weight of the bridge deck p1, kN/m 14.4 14.1 14.4 14.4 14.4 
Whole or half span traffic load p2, kN/m 31.1 30.7 30.4 30.0 29.6 
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A comparison of maximum deflections from the whole-span uniformly 
distributed traffic load 2p  is shown in Fig. 6. The continuous and discrete non-
linear methods give practically the same maximum vertical deflections which are 
about 70–80% of the values obtained with the linear FEM method. 

Figure 7 shows that maximum vertical displacement, in case of double axle 
traffic load, is 1.1 times greater than the value in case of the effective traffic load. 
 

 
 

Fig. 6. Maximum deflections from the whole-span uniformly distributed traffic load. 
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Fig. 7. Deflections from the whole-span load with axles in the middle of the span and at a quarter of it. 
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Thus the linear principle of superposition of the load is not valid for 
suspension bridges. The deflection caused by traffic load is calculated as the 
difference between the deflection, determined for the total load and that 
calculated for the dead load only: 

 

).()()( 1212 pwppwpw −+=                                   (33) 
 
 

5. CONCLUSIONS 
 
The geometrically non-linear equations for discrete and continuous modelling 

of suspension bridges presented in this paper permit adequate determination of 
deflections and inner forces of girder-stiffened cable structures. Continuous 
model may be preferred in case of uniformly distributed loads. More exact 
analysis of bridges under action of great concentrated loads requires application 
of the system of equations of the discrete calculation model. Numerical examples 
demonstrate a good accordance between results of the discrete and continuous 
methods. Comparison of the results with those obtained with the usual FEM 
approach shows that in the latter case the deflections exceed those obtained with 
the non-linear analysis about 1.3–1.4 times. 
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Rippsilla  diskreetne  ja  pidev  modelleerimine 
 

Valdek Kulbach, Siim Idnurm ja Juhan Idnurm 
 
Artiklis on vaadeldud rippsilla arvutamist nii diskreetse kui ka pideva mudeli 

abil. Diskreetsel mudelil põhinevat metoodikat on seni üldjuhul kasutatud ainult 
sadulakujuliste eelpingestatud rippkatuste arvutamisel. Siinne töö näitab võima-
lusi rippsildade arvutamiseks diskreetse mudeli alusel. Vastava võrrandisüsteemi 
koostamisel lähtuti geomeetriliselt mittelineaarsetest tasakaalutingimustest ja 
üldistatud geomeetrilise vastavuse võrranditest, millesse on sisse viidud tugede 
siirded ankurvantide deformatsioonide toimel. Diskreetse mudeli rakendamine 
võimaldab täpsustada pideva mudeli arvutustulemusi lisaks hajukoormusele ka 
sõidukitelt üleantavate koondatud koormuste mõjumisel. Nii pidevat kui ka 
diskreetset arvutusmudelit kasutati Saaremaa püsiühenduse raames kavandatava 
rippsilla esialgsete projektlahenduste väljatöötamisel. 

 


