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Abstract. In the calculation of suspension bridges, the main problem is the geometrically non-
linear behaviour of the cable. Linear methods of analysis are suitable only for very small spans. A
geometrically non-linear continuous model is especially useful for classical loading cases as for the
uniformly distributed load on the whole or half span. However, traffic generates both concentrated
and uniformly distributed loads. The discrete model of a suspension bridge allows one to apply all
kinds of loads, such as the distributed and the concentrated ones. In this paper, application of both
discrete and continuous models for the calculation of the suspension bridges is considered. Linear
elastic strain-stress dependence of the material and absence of the inclination of hangers is
assumed. Hanger elongation may be taken into account. Some comparative numerical examples are
presented.

Key words: suspension bridge, cable systems, continuous modelling, discrete modelling,
geometric non-linearity, girder-stiffened structures.

1. INTRODUCTION

Classical treatment of suspension bridges is presented in [*?]. A generalized
method of continuous modelling of different prestressed cable structures was
proposed in [*7]. It includes plane structures [*°] and spatial networks [*] and
proceeds from geometrically non-linear equilibrium conditions and equations of
deformation compatibility. A peculiarity of this method isimmediate inserting of
displacements of cable supports into the generalized equations of deformation
compatibility.

Recent publications in the field of suspension bridges consider mainly the
wind-induced dynamic processes and specific problems of the design of bridge
elements[°]. A thorough review of literature in this field is given in the hand-
book []. However, in["] only linear models have been considered. More recent
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papers on suspension bridges consider application of the standard finite element
method [®7].

In this paper the analysis of the suspension bridges is carried out using non-
linear equilibrium conditions and generalized equations of deformation
compatibility, taking into account the actual boundary conditions. Discrete and
continuous cal culation models are used in parallel.

2. DISCRETE MODEL FOR AN ELASTIC CABLE
2.1. Initial form of the cable

Under uniformly distributed load a cable takes parabolic form. In readlity the
cable is loaded by concentrated forces. Therefore it takes the form of a string
polygon. The cable may be regarded as a geometrically non-linear rod without
bending stiffness. The nodes of the polygon are on a parabola only if applied
forces are equal and equidistant. The initial state of equilibrium of a cable,
loaded by vertical concentrated loads, is shownin Fig. 1.

From the equilibrium considerations we may write for every node

HOHZi—l 4 L GnT 4 E+ Fo; =0, )
H a. a;

where H, is the initia horizontal force in the cable, z_;,z, and z,, are the
initial vertical coordinates of the nodes, and F,; isthe initial externa force at the
node i.

From Eqg. (1) we have
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Fig. 1. Discrete scheme of a cable element in the state of equilibrium.
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In case of equidistant vertical loads, Eqg. (2) takes the form

1 Fo;a
Z, ==, Yz, T . 3
i z%l 1 1 HO E ( )

Equations (2) and (3) give the ordinates of the string polygon if the horizontal
force H, is known. When the supporting points of the cable are on the same
level (z, =2z,,,), then

3y =
H.=V =
P2z (2, - 2,)

aoi Foi(l = %)
: (4)

where

i Foi(l = %)

V :i:].
0 |

is the vertical reaction from the initial loads F,; and | is the length of the
horizontal projection of the cable.
For a cable with supporting nodes on different levels we have

aoZFo,i (l _Xi)
|(Zz - 21) _aO(Zl - Zn+1).

The initial form of the string polygon is described by three coordinates z, z,,
and Z,,;.

Ho = ()

2.2. The loaded cable

By the action of the additional loads AF, (Fig. 2), the equilibrium equation
for thenode i isexpressed as

H Ezi—l_zi p T4 Wia TW Wi T W E+Fi:0, (6)
a, 8 &1 %

where w,_;, w,, and w,,, are vertical displacements, H is the cable force from
temporary and initial loads, and F, =F,; +AF,.
From Eq. (6), the vertical displacement can be expressed as
- a Fa O
& Wiy +_I(Zi—l _Zi)+(zi+1 _Zi)+ : E} (7)
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Fig. 2. Deformation of the cable under additional load.
There are two unknown parametersin Eq. (7), w, and H. Thus we need an

additional equation for calculating them. For this purpose we use the equality of
the relative elongation of the cable ¢, [%] expressed through node displacements

1+ i+1_Zi§D & a; H a 231
&

and from the condition of linear deformation

_H-H, Hzu — 2

where EA is the stiffness of the cable in tension (E — elasticity modulus, A—
cross-section of the cable).
Taking into account Egs. (8) and (9), this condition may be presented as

Uiy — U :H -H, %+Hzi+l_zi ég Wiy Wz, -7 + Wi T W, E
E a H Ch 23
(10)

Horizontal displacements u; of the internal nodes may be eliminated by
summation of the equations of deformation compatibility (10). Then, since

i(uiﬂ _ui) :un+l - ul' (11)

we may write Eq. (10) in the form
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where u; and u,,,; are displacements of the supports.

Solution of the system of non-linear equations (6) and (12) permits
calculation of H and all the displacements w;, from the initial cable form and
boundary conditionsfor u;, and u,,;.

2.3. Discrete model of an elastic cable with the stiffening girder

The scheme of a girder-stiffened suspension bridge calculation model is
presented in Fig. 3. The initial vertical load F,; is fully balanced by the cable
and prestresses it. The force H, can be calculated from Egs. (4) or (5). Part of
the additional load P is balanced by the cable and the rest of it by the stiffening
girder. The equation that describes the deflection of the girder can be written as

m —_ 2
E,l =E,l +El - F-MW{ -a;
bl oW(X) = Eplpw; + Eplpdix = F; > (x-a;)
=

s _ 3 t _~)4
+szMm<x—bk)+|;p.%m(x—q)

Z

(x=d)" d) D7 (x-d,),

(13)

where E, I, istherigidity of the stiffening girder in bending, w;, is the vertical
displacement, and ¢, is the angle of rotation of the first cross section of the
girder, a;, b.,c, and d, are the coordinates of the points of application of the
forces, and 7/ (X) isthe Heaviside function.

Equation (13) can be used for calculating the deflection from the sum of
applied external concentrated moments, forces F,, and from the uniformly
distributed load p,.

In the case of vertical pylons, the horizontal displacements of the supporting
nodes of the anchor cable may be presented as

(H-Hy2b

Uy =l = 14

where 2b isthe span and a isthe angle of inclination of the anchor cable.
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Fig. 3. A suspension bridge model with vertical pylons and straight anchor cables.

Using Eg. (13), we can write for every hanger joint and the end cross-section
of the girder

(X = %)° X (x— bk)
Wiy =W, +@1X, +zF 6E. VA GRS kzl < 7 (x = by)

z(xz‘“ T (x-6) - z(x D 5 x-a),

El
(15)

where F, is the internal force in the hangers and V, is the vertical support
reaction.

Now we have n linear equations for calculating F,, but there are n+2
unknown parameters: F,,F,...F,,F,, and ¢,. An additional equation can be
written, using the moment equilibrium condition upon the end cross-section of
the girder, asfollows:

iF‘(l -x) +V,l +M =0, (16)

where M is the moment of the external forces at the end of the girder. Thus
with the system of linear equations (15) and (16) it is possible to calculate the
internal forces F, in the hangersif the displacements w;, are known.

Now we can construct an iteration process for calculating the displacements
w;, the cableforce H, and theinternal forcesin hangers F; asfollows:

1) calculation of the prestressing (initial) forces in the cable from Egs.
(2)6); theinitia load F, consists of the weight of the cable and of the part of
the weight of the deck structure of the bridge;

2) estimation of theinitial displacements of the stiffening girder w; ,;
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3) from the system of linear equations (15) and (16), calculation of the
internal forces F, under action of the additional load P ;

4) calculation of the vertical displacements of the cable from Egs. (7), (12),
and (14);

5) comparison of the vertical displacements of the stiffening girder and the
cable; if they differ more than permissible then new stiffening girder displace-
ments are to be calculated and the process is to be repeated starting from point 3
until the whole process converges,

6) the calculation process is finished when the vertical displacements of the
cable and the stiffening girder are equal; then the final values of the cable force
H, of the internal forces of hangers F;, and the vertical displacements of the
cable and of the girder are determined. The internal forcesin the stiffening girder
can be calculated asin asimple beam.

3. CONTINUOUS MODEL

3.1. Basic equations

Equilibrium condition for a continuous girder-stiffened cable structure may
be presented as follows [¥]

Eolpd'w [z d’w
~HE 248 WE po, 17
dx* Hix?  dx? P 17

where w isthe deflection function and p isthe vertical distributed load.
Theinitial form of the cable is usually a parabola (Fig. 4)

XZ
—

a

z=f (18)
where a is the half-span and f the sag of the cable. When assembling the
stiffening girder by successive lifting and suspending its mounting units to the
cable and connecting them to each other, theinitial load of the cable p, consists
of the weight of the cable and the girder together. Corresponding horizontal
force of the cableis

_ poa2

Y (19)

The compatibility condition of the relative elongation of the cable may be
expressed as a condition of equality of geometrical and elastic deformations

3
du_dwdz dw[ (H-Ho) 5 mdz[fE
dx+dx%+2dx§: EA EJ’%QE (20)
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Fig. 4. Continuous model of a suspension bridge with straight anchor cables.

where EA isrigity of the cable in tension and u is horizontal displacement. To
eliminate the displacement u, we have to integrate Eq. (20) over the cable span.
The unknowns w and H are determined by Egs. (17) and (20).

3.2. The structure with straight anchor cables

For the displacement of the cable support under action of the anchor cable,
we may write

J’%dx:(H —Ho)z—bs.
dx E.A, cos’a

0

(21)

Using boundary conditions, after integration of Egs. (17) and (20) we obtain
exact expression for (E,l, / H)¥? in a complicated transcendental form. On the
other hand, we may approximate the cable deflection by a trigonometric function

COSTX
W =-W, , 22
g (22)
where w, is the deflection of the central point of the cable. Using Egs. (17) and
(20) we abtain with Galjorkin procedures, after some simplifications, a cubic
equation for the relative deflection {, =w,/ f

(s +35 +(2+p+po)lo=p (23)

and for the cable force
H=H,+d{,(2+{,). (24)

Here p, =H,/® and p =pa’/(2f®) are parameters of the initia and
additional loads, respectively; p:4EbIB(1+K +79)/(EAf2) is parameter of
rigidity of the stiffening girder, @ =2EAf /[3a2(1+K +3)] istherigidity factor
of the cable k=2f%/a?+12f*/a* is a geometrica factor and
J= 2EAb/ (E,A,acos’ a) isthefactor of deformatibility of the anchor cable.
For the case of half-span loading of the bridge by a live load, it is useful to
divide the total load into symmetrical (p,) and antisymmetrical (p,) parts and
to make the analysis in two steps. When calculating displacements and inner
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forces for the antisymmetrical load, new geometrical and statical parameters are to
be used. The deflection function for the antisymmetrical load is approximated as

w=-w, sn’%. (25)
a

The deflection parameter of the structure may be obtained from the equation
513 +(p1+p;)51=pf,, (26)

where
Z=w/fy, i =f@+), P =p/@+{0)°

(pO + ps)a2 * - pua'2 — 15EAf12

Pos =t 0, P TBLe, T aal1ek+0)

3.3. Suspension bridge with loaded anchor cables

In case of a symmetrical bridge with loaded anchor cables (Fig.5.), the
condition of equilibrium (17) and the equation of deformation compatibility (20)
are to be applied to the middle span and to anchor spans as well. The boundary
conditions for the connecting point of cables consist of the equality of horizontal
cable forces both before and after loading and of the equality of horizontal
displacements. For horizontal cable forces before and after additional loading we
may write

p0a2 - p01b2 (27)
2t 2f
(P + P)a° _ (Poy + Py)b° 28)

2f(1+0,) 26,0+,

where index 1 indicates the loaded anchor cable and {, =w,/f, is relative
deflection parameter of it. From Eq. (27) we obtain

2
f,=f prz. (29)
Pod
Equation (28) brings us to the equality
1+, =1(1+,). (30)

Now we may write the condition of equality of displacements of the upper
end of the pylon, determined from the middle span and from the side span of the
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Fig. 5. Suspension bridge with loaded anchor cables.

cable, in the form which enables us to calculate relative displacement of the
cable in the middle span of the structure

@ %) 8 B Yr2) & H2 Hp(L-3r2) +(pg +p) W (Por+ P10
* * 1 Ve
=p +%p1 _"U%_?E(pm‘*l?l) +P(L-1%), (31)

where
g =2af/(bf ), T=(poy+PIO*F/I(Po *+ P)A* 1], Por=Ho/Py,
b= pa’/(2f®,), @, =2Eaf/[30°(L+K,)],
Kk, =212 /b% +3n%/(80%) + 3n f,/b? +3n3f,/(2b*) +3n*/(128b%) .

After determination of the relative deflection {,, we can caculate the
corresponding deflection of the anchor span ¢, from Eq. (30). Horizontal cable
force may be calculated as

H =H, +®Zo(2+ o). (32)

4. NUMERICAL EXAMPLES
Let us consider suspension bridges with the parameters, used for provisional
design of the bridge from the Estonian mainland to the Saaremaa Island
(Table 1).

Table 1. Parameters of the suspension bridges

Span, m 600 780 960 1080 1200
Sag of the cable, m 75 975 120 135 150
Side span, m 250 325 400 450 500
Moment of inertia of the stiffening girder I, x10* cm® 1269 2488 2964 4524 5896
Y oung's modulus of the stiffening girder E,, GPa 210 210 210 210 210
Cross-section area of the cable A, cm? 768 1092 1458 1738 2008
Y oung's modulus of the cable E, GPa 170 170 170 170 170
Initial whole span load po, KN/m 304 382 433 500 548
Additional weight of the bridge deck p;, kN/m 144 141 144 144 144
Whole or half span traffic load py, KN/m 311 307 304 300 296

130



A comparison of maximum deflections from the whole-span uniformly
distributed traffic load p, is shown in Fig. 6. The continuous and discrete non-
linear methods give practically the same maximum vertical deflections which are
about 70-80% of the values obtained with the linear FEM method.

Figure 7 shows that maximum vertical displacement, in case of double axle
traffic load, is 1.1 times greater than the value in case of the effective traffic load.

Deflection, cm
]
3

-360 |

-400

-450
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Fig. 6. Maximum deflections from the whole-span uniformly distributed traffic load.
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Traffic load with axles in the middle of the span
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— -+— - Traffic load with axles in the quarter of the span
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Fig. 7. Deflections from the whole-span load with axlesin the middle of the span and at aquarter of it.
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Thus the linear principle of superposition of the load is not valid for
suspension bridges. The deflection caused by traffic load is calculated as the
difference between the deflection, determined for the total load and that
calculated for the dead load only:

wW(p,) =wW(p; + P,) —W(Ppy). (33)

5. CONCLUSIONS

The geometrically non-linear equations for discrete and continuous modelling
of suspension bridges presented in this paper permit adequate determination of
deflections and inner forces of girder-stiffened cable structures. Continuous
model may be preferred in case of uniformly distributed loads. More exact
analysis of bridges under action of great concentrated loads requires application
of the system of equations of the discrete calculation model. Numerical examples
demonstrate a good accordance between results of the discrete and continuous
methods. Comparison of the results with those obtained with the usual FEM
approach shows that in the latter case the deflections exceed those obtained with
the non-linear analysis about 1.3-1.4 times.
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Rippsilla diskreetne ja pidev modelleerimine
Vadek Kulbach, Siim Idnurm ja Juhan Idnurm

Artiklis on vaadeldud rippsilla arvutamist nii diskreetse kui ka pideva mudeli
abil. Diskreetsel mudelil pShinevat metoodikat on seni tUldjuhul kasutatud ainult
sadulakujuliste eelpingestatud rippkatuste arvutamisel. Siinne t66 néitab voima-
lusi rippsildade arvutamiseks diskreetse mudeli alusel. Vastava vorrandisiisteemi
koostamisel lahtuti geomeetriliselt mittelineaarsetest tasakaalutingimustest ja
Uldistatud geomeetrilise vastavuse vorranditest, millesse on sisse viidud tugede
siirded ankurvantide deformatsioonide toimel. Diskreetse mudeli rakendamine
vOimaldab tépsustada pideva mudeli arvutustulemusi lisaks hajukoormusele ka
sOidukitelt Uleantavate koondatud koormuste méjumisel. Nii pidevat kui ka
diskreetset arvutusmudelit kasutati Saaremaa piisiihenduse raames kavandatava
rippsilla esialgsete projektlahenduste vajatdotamisel .
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