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Abstract. Usually the cable network of a saddle-shaped roof is formed inside a contour of two
inclined plane arches which are supported by massive counterforts at lower ends. In the present
paper advantages of hypar-networks encircled by a spatial contour beam with dliptical layout and
without any external horizontal supports have been presented. Both discrete and continuous
calculation methods can be used for the analysis of the stress-strain state of those networks. A
system of non-dimensional parameters is used to study the effect of variable geometrical and
stiffness properties on the behaviour of an eliptical roof structure. Comparison of the behaviour of
cable networks with different contour beamsis given.
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hanging roof, suspended roof, prestressed cable network, suspension structure.

1. INTRODUCTION

Making use of prestressed cable networks in roof structures permit the
designer to span large areas in an efficient way. The net surface is formed by
prestressing a two-way cable system within a spatial contour structure. In the
studies of the last decades, reported in [*?], two basic models for the analysis of
cable networks, continuous and discrete, have been used.

Discrete schemes, starting with the paper [*], have utilized straight bar
elements to model the cable links between the nodes and permit an analysis of
the networks without remarkable geometrical restrictions. Continuous schemes
may be applied only to networks with configurations that are convenient to
describe analytically, like hyperbolic paraboloid, for example.

Due to the complex nature of interaction between the contour and the
network, the behaviour of cable roofs is strongly dependent on geometrical and
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stiffness characteristics of its elements. The contour structure makes up a
substantial part of the overall cost of the structure. In practice more often heavy
and rigid supports have been used. Buchholdt [?] refers to the tendency to
overdimension the support beams. Optimizing of the supports results in more
flexible boundary structures which can modify the overal behaviour of the
system and therefore deserve particular attention. Godbole et al. [*], Majowiecki
and Zoulas[’], and Mitsugi [*] have introduced support displacements in the
discrete numerical model of cable structures.

The present paper treats cable networks with two different contour structures.
The first one is formed inside a contour of two inclined planar arches. Regions
of the network surface of this kind have essential curvatures near the counter-
forts, while the surface near the arch crowns is quite flat and therefore
susceptible to vibrations under the action of fluctuating wind. The other network
is a hypar with élliptical layout. Its contour is formed as a spatially curved beam
without any external horizontal supports (Fig. 1). Both discrete and continuous

Y

Hypar-network with elliptical contour beam

Fig. 1. Models of saddle-shaped networks with different contour structures.
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methods have been applied for their analysis. As all orthogonal networks, hypar
networks can be prestressed only if the crossing cables have been fixed at the
nodes. In case of continuous analysis, the contact load between two families of
cablesis regarded as continuous.

The results of the study demonstrate the effect of the variable geometrical and
stiffness parameters on the performance of suspended cable roofs, emphasizing
certain advantages of the contour flexibility on the static response of the
structure. The proposed continuous model enables us to describe the complex
non-linear structure including the interaction of the flexible contour with the
cable network.

2. DISCRETE ANALYSIS

The complex structural configuration consists of two substructures — the
network and the contour beam. The common assumptions about the linear strain
diagram of materials and negligible weight of the network with regard to other
loads were made. The cables were regarded as geometrically non-linear bars
without flexural rigidity, and contour beams as linear beam elements. The
network consists of two families of cables —the carrying and the stretching ones.
At every node we have a point contact between the carrying and the stretching
cable. After loading the network, the contact load changes; corresponding
condition of equilibrium of the node i,k can be expressed from the vector
diagram in Fig. 2, where r,, is the radius vector and u;, is the displacement
vector of thenode i,k; S, and T, aretheinternal forces of the kth section of
the ith carrying cable and the ith section of the kth stretching cable. The
equations of deformation compatibility for the kth section of the ith carrying
cable and the ith section of the kth stretching cable may be written in the form

AratAu;
KT A AT
‘A r\‘k+1+Aui‘k+1‘
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A r\+1,k+Aui+1,k
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|A r\+1,k+Au\+1,k|
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" ‘A rk,\ +Auk,\‘
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Fig. 2. Schematic of the equilibrium of the node i, k of acable network.
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where E;A and E, A, are the tension stiffness of the ith carrying and the kth
stretching cable, Ar;, =1, —1,, 4 and Au;, =u;, —U; ,, are the changes of
corresponding vectors for the ith carrying cable, Ar; =r —r. 4 and
Aug; =u,; —u,_; are the changes of the vectors for the kth stretching cable,
and index O denotes the initial prestressed state before |oading.

Displacements of the contour nodes of the network are to be expressed by
linear combinations of the products of all cable forces and the corresponding
displacements of nodes of the contour beam, caused by the unit force.

Considering the action of vertical |oads, determination of the cable forces and
displacements of the nodes of an orthogonal network can be essentially
simplified ["]. In this case the horizontal component of internal forces for all
sections of every cable is constant. At the same time, additional simplifications
may be applied. Lateral displacements of the nodes and the corresponding force
components may be ignored both in the conditions of equilibrium as well asin
the equations of deformation compatibility. The longitudinal displacements of
the network’ s internal nodes may be eliminated by means of summation over all
the members of the equations of deformation compatibility. Horizontal displace-
ments of the contour nodes may be expressed by corresponding deflections under
the action of all the cable forces. Vertical displacements of the contour nodes are
usually prevented by fixing the contour structure to the wall columns. In this
case the conditions of equilibrium are to be applied to every node and the
equations of deformation compatibility for every cable can be expressed as

G (Zik-1=2Zp +Zar) T (W =20 + Wiyq)
|
a
(Z-1k =2Z x + Z41) +éW|-1,k —2W e+ W) F =0,

+H,

> (W jear =W )I(Z a1 = Z k) +0.5(W jeag = W )]

22 Z\/[1+(Zi,k+1_zi,k)2] 3 _
E A

=(G - Gyi) (U m—Uig)a, (4)
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where G, and G, are the horizontal force of the ith carrying cable before and
after loading the network, H, and H, are the same for the kth stretching
cable, and u; ,,, Ui o, V., and v, , arethe displacements of the contour nodes
of the ith carrying and kth stretching cable under the action of all the cable
forces. They may be determined by multiplying the cable forces and the
corresponding ordinates of influence lines, constructed for displacements of
nodes of the contour beam. Summation in (4) is to be extended over al the
sections of the ith carrying cable and summation in (5) over al the sections of
the kth stretching cable.

= (Vicn —Vi0) b, (5)

3. CONTINUOUS MODEL FOR ANALYSIS OF HYPAR-NETWORKS

An orthogonal hypar-network in Fig. 1 consists of concave carrying and
convex stretching cables and may be described as atrandatory surface

fx2 .y
Z= ? - b2 . (6)
In case of vertical loading, the condition of equilibrium and the equations of
deformation compatibility may be written in the form [?]

Go?%(z+w) Ho?%(z+w)
+ —
5)(2 @2

X Da’/2
(G-Gy) EL+E@§D dx
J B

p=0, ()

Xy 5N 7 aN _ X EﬁXD E _

_{1 = élg—x +0527 de - o u(y), (8
yi D%/z

y (H-Ho) [ E1+%EZD dx

| o Z+0.5‘j—"’ij= s J ~2v,(X), ©)

-, oy % Ety

where u,v, and w are the displacements in the direction of axes x,y, and z,
respectively; Et, and Et, are the stiffnesses of the carrying and stretching
cables per unit width, u,(y) and v,(x) are the horizontal displacements of the
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contour beam caused by cable forces AG=(G-Gy) and AH =(H —-H,),
x =al-y?/b?)¥?, and y, =b(1-x?/a?)¥? are coordinates of the contour
beam for integration.

Full analogy exists between the agebraic equations (7)—«9) and the
differential equations (3)—5). Vertical displacements of the network and
horizontal displacements of its contour beam may be approximated as follows:

2 2
W(x,y)=WOOE:—2+Z—2—1E (10)

2
u(y) =5(AGb? - AH a?) b@%—ga

72E, ’ (1)
2 2
v (y) =5(AH a® -AG bz)aﬁﬁ—;a
72E.| ’ (12)

where E_| . istheflexural stiffness of the contour beam.

Substituting Egs. (10), (11), and (12) into Egs. (7), (8), and (9) and using
well-known Galjorkin procedures, we obtain the following system of equations
for the relative deflection of the network and the cable forces, presented by non-
dimensional parametersin the following generalized form [?]

@+y +48) 23 +JA-ay) +2(1-a){ 1L
+{2[1+aY) +(1-a)*E]+ pp(l+a N}o=p,  (13)
G=G, + DL [(2+,) +2(L—a +,)é], (14)
H=Hg - B2, [(20 - - 2(1-a +,)E], (15)

where {, =Wy, / f, isthe relative deflection of the network, a = f, /f,, wy, is
the deflection at the centre of the network,

p=a't, (k) /b @+k )], K, =5(7/(3a%), K, =5f7/(30%,
& =5€t,a’ (a/b)** [72E 11+, )],

p' = pa?/2f,®), py=pea®/(2f,@),

@ =15Et, 1,7 [[9a° (L+K, )L+ pé)], p=1l+y™
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Here p isthe uniform loading, p, is the prestressing contact load between
the cables, , Ky and k, are geometrical parameters, ¢ is the parameter of
contour stiffness, p’ |stheload|ng parameter, p, isthe prestressing parameter,
and @ isthe stiffness parameter of the cables.

Equations (13), (14), and (15) are very similar to equations, derived for
double-cabled planar truss structures [*%]. Significant difference in the behaviour
of stretching cables under the action of loading should be pointed out.

4. DEPENDENCE OF THE BEHAVIOUR OF A HYPAR-NETWORK
ON ITS MAIN PARAMETERS

The main variable parameters of a hypar-network with given dimensions
a,b, f="f +f, and t=t, +t, are the geometrical factors a=f, /f, and
T =t, /t, and the stiffness parameter of the contour beam ¢&; t, and t, arethe
equivalent thicknesses of the network in directions x and y. Stiffness of the
contour beam is a very important factor in the stress-strain state of the network
aswell asin total material consumption of the roof structure as awhole.

A hypar-network with dimensions a=30m, b=24m, f=72m,
t=1.2 mm was chosen for detailed analysis. A structure with the following
parameters was considered as the basic case: t, =t, =06 mm, a = fy/ f, =0.5,
tubular contour beam 12400 % 32 mm (€ =5).

The diagrams in Figs. 3 and 4 illustrate how the network deflection and the
cable forces depend on the loading for different ratios of cross-section areas of the
cables. It is worth to mention that smaller curvatures of the stretching cables are to
be preferred as to the effect on network deflection and cable forces. That
phenomenon may be explained by more efficient action of relatively flat stretching
cables as tension rods for the contour beam. On the other hand, in this case higher
values of the prestress are needed to keep the stretching cablesin tension.

=20
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& ; 3 : ; r=t /t,

; : ' t=(t+t )2 =0.6
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Fig. 3. Network deflection with uniform loading, effect of the geometrical parameter T.
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Fig. 4. Variation of cable forces with uniform loading for different values of 7.

Figures 5 and 6 demonstrate the effect of variation of flexural stiffness of the
contour beam on the network deflections and cable forces. The effect of
geometrical non-linearity is most considerable in case of low stiffness values of
the contour beam. Forces in stretching cables decrease with increasing contour
stiffness. The relation between deflections, cable forces, and geometrical factor
o ispresented in Figs. 7 and 8.
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Fig. 5. Network deflections with uniform loading, effect of the stiffness & of the contour beam.
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Fig. 6. Variation of cable forceswith uniform loading, effect of the stiffness £ of the contour beam.
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Fig. 7. Network deflection with uniform loading, effect of the geometrical parameter a.
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Fig. 8. Network deflection with uniform loading, effect of the geometrical parameter a.
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5. COMPARISON OF COUNTERFORT-SUPPORTED NETWORKS
AND HYPAR-NETWORKS

In order to find out the influence of the contour beam configuration on the
behaviour of the structure, the hypar-networks, described in Section 4, were
compared with networks which have counterfort-supported contour of two inclined
parabolic arches. The enclosed area under both roofsis equal. Bending stiffness of
the contour beam is corresponding to the basic model of the previous section. The
results of the comparison show the genera tendency that the hypar-network with
elliptical layout is able to resist normal roof |oads with very flexible contour beam
(¢ =80), while the corresponding network with inclined arches looses its bearing
capacity under the action of relatively small loading due to the dackening of
stretching cables. A selection of comparative resultsis presented in Figs. 9-13.
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Fig. 9. Deflection of the central stretching cable on y axis with uniform network loading
p =2 kN/m?.
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Fig. 10. Deflection of the centra carrying cable on x axis with uniform network loading
p =2 kN/m?.
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Fig. 11. Forces in stretching cables with uniform network loading p = 2 kN/m%
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Fig. 12. Forces in carrying cables with uniform network loading p =2 kN/m?.
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Fig. 13. Bending moment in the contour beam with uniform network loading p =2 kN/m?,
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6. CONCLUSIONS

1. Maximum deflections and bending moments in the hypar-network are
larger than in the saddle-shaped network with contour supported by counterforts.

2. Networks, formed inside a counterfort-supported contour beam of two
planar arches, have characteristic regions with different curvatures. Relatively
flat regions near the arch crowns are especially unfavourable as they tend to
loose contact load and are susceptible to the action of fluctuating wind.

3. Networks, formed inside a contour beam of two planar arches, need
considerably greater prestressing forces than the hypar-network with dliptical
layout to keep stretching cablesin tension.

4. Distribution of cable forces is more uniform in hypar-network with an
elliptical freely deformable contour beam.

5. The hypar-network with elliptical layout does not heed massive counter-
forts because of effective action of the stretching cables.

6. Efficient solutions for hypar-networks assume careful selection of
geometrical factors and structural parameters.
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Erineva kontuuriga sadulakujuliste vork-rippkatuste
to6 analtiis

Valdek Kulbach, Juhan Idnurm jalvar Talvik

Enamiku seni ehitatud vork-rippkatuste kontuur on moodustatud kahest kaldu
asetatud tasapinnalisest kaarest. Siinse uurimuse tulemuste kohaselt on hiipari-
kujulise rippkatuse dliptilisel, réhtsuunas vabalt deformeeruval kontuuril mit-
meid eeliseid vorreldes kahest kaarest kontuuriga. Nendeks on nii trosside kui ka
kontuuri sisgj@udude ja siirete Uhtlasem jaotus ning markimisvaarselt vaiksem
vajaik trosside eelpingestusioud. Konstruktsiooni t66 uurimiseks on kasutatud
nii diskreetset kui ka pidevat arvutusmudelit. Viimase juures on lahtutud dimen-
sioonita parameetrite siisteemist, mis voimaldab arvutustulemusi Uldistada. Graa-
fikutel on esitatud hiparikujulise rippkatuse sisejdudude ja siirete sBltuvus
konstruktsiooni pohiparameetritest. Oluliselt m&jutab slisteemi t66d kontuuri
jdikus ja geomeetria. Esitatud on ka éliptilise ja kahest kaarest kontuuriga
vorkkonstruktsiooni siirete ja sisej6udude vordlusgraafikud.
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