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Abstract. Usually the cable network of a saddle-shaped roof is formed inside a contour of two 
inclined plane arches which are supported by massive counterforts at lower ends. In the present 
paper advantages of hypar-networks encircled by a spatial contour beam with elliptical layout and 
without any external horizontal supports have been presented. Both discrete and continuous 
calculation methods can be used for the analysis of the stress-strain state of those networks. A 
system of non-dimensional parameters is used to study the effect of variable geometrical and 
stiffness properties on the behaviour of an elliptical roof structure. Comparison of the behaviour of 
cable networks with different contour beams is given. 
 
Key words: cable structure, continuous analysis, discrete analysis, geometrical non-linearity, 
hanging roof, suspended roof, prestressed cable network, suspension structure. 

 
 

1. INTRODUCTION 
 
Making use of prestressed cable networks in roof structures permit the 

designer to span large areas in an efficient way. The net surface is formed by 
prestressing a two-way cable system within a spatial contour structure. In the 
studies of the last decades, reported in [1,2], two basic models for the analysis of 
cable networks, continuous and discrete, have been used. 

Discrete schemes, starting with the paper [3], have utilized straight bar 
elements to model the cable links between the nodes and permit an analysis of 
the networks without remarkable geometrical restrictions. Continuous schemes 
may be applied only to networks with configurations that are convenient to 
describe analytically, like hyperbolic paraboloid, for example. 

Due to the complex nature of interaction between the contour and the 
network, the behaviour of cable roofs is strongly dependent on geometrical and 
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stiffness characteristics of its elements. The contour structure makes up a 
substantial part of the overall cost of the structure. In practice more often heavy 
and rigid supports have been used. Buchholdt [2] refers to the tendency to 
overdimension the support beams. Optimizing of the supports results in more 
flexible boundary structures which can modify the overall behaviour of the 
system and therefore deserve particular attention. Godbole et al. [4], Majowiecki 
and Zoulas [5], and Mitsugi [6] have introduced support displacements in the 
discrete numerical model of cable structures. 

The present paper treats cable networks with two different contour structures. 
The first one is formed inside a contour of two inclined planar arches. Regions 
of the network surface of this kind have essential curvatures near the counter-
forts, while the surface near the arch crowns is quite flat and therefore 
susceptible to vibrations under the action of fluctuating wind. The other network 
is a hypar with elliptical layout. Its contour is formed as a spatially curved beam 
without any  external horizontal  supports (Fig. 1).  Both discrete and continuous  

 

 
 

Fig. 1. Models of saddle-shaped networks with different contour structures. 
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methods have been applied for their analysis. As all orthogonal networks, hypar 
networks can be prestressed only if the crossing cables have been fixed at the 
nodes. In case of continuous analysis, the contact load between two families of 
cables is regarded as continuous. 

The results of the study demonstrate the effect of the variable geometrical and 
stiffness parameters on the performance of suspended cable roofs, emphasizing 
certain advantages of the contour flexibility on the static response of the 
structure. The proposed continuous model enables us to describe the complex 
non-linear structure including the interaction of the flexible contour with the 
cable network. 

 
 

2. DISCRETE  ANALYSIS 
 
The complex structural configuration consists of two substructures – the 

network and the contour beam. The common assumptions about the linear strain 
diagram of materials and negligible weight of the network with regard to other 
loads were made. The cables were regarded as geometrically non-linear bars 
without flexural rigidity, and contour beams as linear beam elements. The 
network consists of two families of cables – the carrying and the stretching ones. 
At every node we have a point contact between the carrying and the stretching 
cable. After loading the network, the contact load changes; corresponding 
condition of equilibrium of the node ki,  can be expressed from the vector 
diagram in Fig. 2, where kir ,  is the radius vector and kiu ,  is the displacement 
vector of the node ;, ki  kiS ,  and kiT ,  are the internal forces of the thk  section of 
the thi  carrying cable and the thi  section of the thk  stretching cable. The 
equations of deformation compatibility for the thk  section of the thi  carrying 
cable and the thi  section of the thk  stretching cable may be written in the form 

 

 
Fig. 2. Schematic of the equilibrium of the node ki,  of a cable network. 
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where ii AE  and kk AE  are the tension stiffness of the thi  carrying and the thk  
stretching cable, 1,,, −−=∆ kikiki rrr  and 1,,, −−=∆ kikiki uuu  are the changes of 
corresponding vectors for the thi  carrying cable, 1,,, −−=∆ ikikik rrr  and 

1,,, −−=∆ ikikik uuu  are the changes of the vectors for the thk  stretching cable, 
and index 0 denotes the initial prestressed state before loading. 

Displacements of the contour nodes of the network are to be expressed by 
linear combinations of the products of all cable forces and the corresponding 
displacements of nodes of the contour beam, caused by the unit force. 

Considering the action of vertical loads, determination of the cable forces and 
displacements of the nodes of an orthogonal network can be essentially 
simplified [7]. In this case the horizontal component of internal forces for all 
sections of every cable is constant. At the same time, additional simplifications 
may be applied. Lateral displacements of the nodes and the corresponding force 
components may be ignored both in the conditions of equilibrium as well as in 
the equations of deformation compatibility. The longitudinal displacements of 
the network’s internal nodes may be eliminated by means of summation over all 
the members of the equations of deformation compatibility. Horizontal displace-
ments of the contour nodes may be expressed by corresponding deflections under 
the action of all the cable forces. Vertical displacements of the contour nodes are 
usually prevented by fixing the contour structure to the wall columns. In this 
case the conditions of equilibrium are to be applied to every node and the 
equations of deformation compatibility for every cable can be expressed as 
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where iG0  and iG  are the horizontal force of the thi  carrying cable before and 
after loading the network, kH 0  and kH  are the same for the thk  stretching 
cable, and ,,miu  ,0,iu  ,,nkv  and 0,kv  are the displacements of the contour nodes 
of the thi  carrying and thk  stretching cable under the action of all the cable 
forces. They may be determined by multiplying the cable forces and the 
corresponding ordinates of influence lines, constructed for displacements of 
nodes of the contour beam. Summation in (4) is to be extended over all the 
sections of the thi  carrying cable and summation in (5) over all the sections of 
the thk  stretching cable. 

 
 

3. CONTINUOUS  MODEL  FOR  ANALYSIS  OF  HYPAR-NETWORKS 
 
An orthogonal hypar-network in Fig. 1 consists of concave carrying and 

convex stretching cables and may be described as a translatory surface 
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In case of vertical loading, the condition of equilibrium and the equations of 
deformation compatibility may be written in the form [8] 
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where ,, vu  and w  are the displacements in the direction of axes ,, yx  and ,z  
respectively; xEt  and yEt  are the stiffnesses of the carrying and stretching 
cables per unit width, )(1 yu  and )(1 xv  are the horizontal displacements of the 
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contour beam caused by cable forces )( 0GGG −=∆  and ),( 0HHH −=∆  
,)1( 2122

1 byax −=  and 2122
1 )1( axby −=  are coordinates of the contour 

beam for integration. 
Full analogy exists between the algebraic equations (7)–(9) and the 

differential equations (3)–(5). Vertical displacements of the network and 
horizontal displacements of its contour beam may be approximated as follows: 
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where cc IE  is the flexural stiffness of the contour beam. 
Substituting Eqs. (10), (11), and (12) into Eqs. (7), (8), and (9) and using 

well-known Galjorkin procedures, we obtain the following system of equations 
for the relative deflection of the network and the cable forces, presented by non-
dimensional parameters in the following generalized form [9] 
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where xfw000 =ζ  is the relative deflection of the network, 00, wff xy=α  is 
the deflection at the centre of the network, 
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Here p  is the uniform loading, 0p  is the prestressing contact load between 
the cables, ,ψ  ,xκ  and yκ  are geometrical parameters, ξ  is the parameter of 
contour stiffness, *p  is the loading parameter, *

0p  is the prestressing parameter, 
and -  is the stiffness parameter of the cables. 

Equations (13), (14), and (15) are very similar to equations, derived for 
double-cabled planar truss structures [10]. Significant difference in the behaviour 
of stretching cables under the action of loading should be pointed out. 

 
 

4. DEPENDENCE  OF  THE  BEHAVIOUR  OF  A  HYPAR-NETWORK  
ON  ITS  MAIN  PARAMETERS 

 
The main variable parameters of a hypar-network with given dimensions 

,,, yx fffba +=  and ,yx ttt +=  are the geometrical factors xy ff=α  and 
xy tt=τ  and the stiffness parameter of the contour beam xt;ξ  and yt  are the 

equivalent thicknesses of the network in directions x  and .y  Stiffness of the 
contour beam is a very important factor in the stress-strain state of the network 
as well as in total material consumption of the roof structure as a whole. 

A hypar-network with dimensions 30=a  m, 24=b  m, 2.7=f  m, 
2.1=t  mm was chosen for detailed analysis. A structure with the following 

parameters was considered as the basic case: 6.0== yx tt  mm, ,5.0== xy ffα  
tubular contour beam ).5(mm322400 =×∅ ξ  

The diagrams in Figs. 3 and 4 illustrate how the network deflection and the 
cable forces depend on the loading for different ratios of cross-section areas of the 
cables. It is worth to mention that smaller curvatures of the stretching cables are to 
be preferred as to the effect on network deflection and cable forces. That 
phenomenon may be explained by more efficient action of relatively flat stretching 
cables as tension rods for the contour beam. On the other hand, in this case higher 
values of the prestress are needed to keep the stretching cables in tension. 

 

 
 

Fig. 3. Network deflection with uniform loading, effect of the geometrical parameter .τ  
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Fig. 4. Variation of cable forces with uniform loading for different values of .τ  
 
 

Figures 5 and 6 demonstrate the effect of variation of flexural stiffness of the 
contour beam on the network deflections and cable forces. The effect of 
geometrical non-linearity is most considerable in case of low stiffness values of 
the contour beam. Forces in stretching cables decrease with increasing contour 
stiffness. The relation between deflections, cable forces, and geometrical factor 
α  is presented in Figs. 7 and 8. 
 
 

 
 

Fig. 5. Network deflections with uniform loading, effect of the stiffness ξ  of the contour beam. 
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Fig. 6. Variation of cable forces with uniform loading, effect of the stiffness ξ  of the contour beam. 

 

 
 

Fig. 7. Network deflection with uniform loading, effect of the geometrical parameter .α  
 

 
 

Fig. 8. Network deflection with uniform loading, effect of the geometrical parameter .α  
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5. COMPARISON  OF  COUNTERFORT-SUPPORTED  NETWORKS  
AND  HYPAR-NETWORKS 

 
In order to find out the influence of the contour beam configuration on the 

behaviour of the structure, the hypar-networks, described in Section 4, were 
compared with networks which have counterfort-supported contour of two inclined 
parabolic arches. The enclosed area under both roofs is equal. Bending stiffness of 
the contour beam is corresponding to the basic model of the previous section. The 
results of the comparison show the general tendency that the hypar-network with 
elliptical layout is able to resist normal roof loads with very flexible contour beam 

),80( =ξ  while the corresponding network with inclined arches looses its bearing 
capacity under the action of relatively small loading due to the slackening of 
stretching cables. A selection of comparative results is presented in Figs. 9–13. 
 

 
 

Fig. 9. Deflection of the central stretching cable on y axis with uniform network loading 
2=p  kN/m2. 

 

 
 

Fig. 10. Deflection of the central carrying cable on x  axis with uniform network loading 
2=p  kN/m2. 
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Fig. 11. Forces in stretching cables with uniform network loading 2=p  kN/m2. 
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Fig. 12. Forces in carrying cables with uniform network loading 2=p  kN/m2. 
 
 

 
 

Fig. 13. Bending moment in the contour beam with uniform network loading 2=p  kN/m2. 
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6. CONCLUSIONS 
 
1. Maximum deflections and bending moments in the hypar-network are 

larger than in the saddle-shaped network with contour supported by counterforts. 
2. Networks, formed inside a counterfort-supported contour beam of two 

planar arches, have characteristic regions with different curvatures. Relatively 
flat regions near the arch crowns are especially unfavourable as they tend to 
loose contact load and are susceptible to the action of fluctuating wind. 

3. Networks, formed inside a contour beam of two planar arches, need 
considerably greater prestressing forces than the hypar-network with elliptical 
layout to keep stretching cables in tension. 

4. Distribution of cable forces is more uniform in hypar-network with an 
elliptical freely deformable contour beam. 

5. The hypar-network with elliptical layout does not need massive counter-
forts because of effective action of the stretching cables. 

6. Efficient solutions for hypar-networks assume careful selection of 
geometrical factors and structural parameters. 
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Erineva  kontuuriga  sadulakujuliste  võrk-rippkatuste   
töö  analüüs 

 
Valdek Kulbach, Juhan Idnurm ja Ivar Talvik 

 
Enamiku seni ehitatud võrk-rippkatuste kontuur on moodustatud kahest kaldu 

asetatud tasapinnalisest kaarest. Siinse uurimuse tulemuste kohaselt on hüpari-
kujulise rippkatuse elliptilisel, rõhtsuunas vabalt deformeeruval kontuuril mit-
meid eeliseid võrreldes kahest kaarest kontuuriga. Nendeks on nii trosside kui ka 
kontuuri sisejõudude ja siirete ühtlasem jaotus ning märkimisväärselt väiksem 
vajalik trosside eelpingestusjõud. Konstruktsiooni töö uurimiseks on kasutatud 
nii diskreetset kui ka pidevat arvutusmudelit. Viimase juures on lähtutud dimen-
sioonita parameetrite süsteemist, mis võimaldab arvutustulemusi üldistada. Graa-
fikutel on esitatud hüparikujulise rippkatuse sisejõudude ja siirete sõltuvus 
konstruktsiooni põhiparameetritest. Oluliselt mõjutab süsteemi tööd kontuuri 
jäikus ja geomeetria. Esitatud on ka elliptilise ja kahest kaarest kontuuriga 
võrkkonstruktsiooni siirete ja sisejõudude võrdlusgraafikud. 

 


