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Abstract. This paper considers the most common adaptation techniques for standard and Sugeno
fuzzy systems with special regard to post-adaptation linguistic interpretability. The level of

adaptation is characterized by the approximation error, but there is no similarly accepted measure

for the validity of linguistic interpretation (transparency) and the detection of the latter relies much

on empirical observation. Such observation is hardly possible beyond three-dimensional space. The

general purpose of this paper is to find out how adaptation algorithms for antecedent and/or

consequent parameters, such as gradient descent method, least squares estimation, and clustering
techniques, act on the interpretability of the system besides their approximation properties. The

comparison of the algorithms is based on the modelling of a simple single-input single-output
system. The conclusion that the transparency of the observed system depends on the degree of

overlap ofneighbouring input fuzzy sets can, however, be generalized for multivariate systems.

Key words: modelling, fuzzy systems, Sugeno systems, fuzzy clustering, gradient descent, least

squares estimation, accuracy, interpretability, adaptability.

1. INTRODUCTION

The most attractive property of fuzzy systems lies in their ability to process
the information both linguistically and numerically. The universal approximation
property of fuzzy systems has been thoroughly investigated ['*] and successfully
applied. Besides the approximation capabilities of fuzzy systems, few authors

have given proper importance to the linguistic interpretation problem. It can be

said that the full potential of fuzzy systems is not used yet, because linguistic
interpretation (when valid) is a rather powerful tool for analysing the numerical

data and can give useful information about the modelled unknown system.
The majority of fuzzy systems employed in modelling and control belong to

the Sugeno family for which the adaptation rules are most easily derived and

efficient. At the same time, the issue of linguistic interpretation is somewhat
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shadowed, partly due to the semi-linguistic nature of the Sugeno rulebase. For

standard (Mamdani) fuzzy systems with clear linguistic rules, adaptation
algorithms giving satisfactory accuracy of the model are rare. Possible exceptions
are genetic algorithms [*] that often are not usable in practical situations due to

the amount of computations and/or large adaptation time.

There is a trade-offbetween interpretability and adaptability and it depends on

the particular control/modelling problem to which the preference should be

given. It is usually possible to reach a satisfactory solution by selecting a suitable

fuzzy system and adaptation algorithm. For that reason, general understanding of

the adaptation techniques and features of different fuzzy systems is useful. In this

paper the most common adaptation techniques are described and analysed from

the viewpoint of transparency.

2. FUZZY SYSTEMS

A multi-input multi-output fuzzy system is given by the rulebase the rth

(r=1,..., R) rule of which defines the linguistic relationship between the inputs

U; (i=1,...,N) and outputs V; (j=1....M) of the system via their linguistic

labels A, 8,,:

ifU,ls A,and U, is A,, ...and U;is A, ...and U is A,,,

then V, is Bj, and V, is 8,, ...and V; is B, ...and V,, is By,-

The numerical interpretation is given by normal convex fuzzy sets defined by
standard membership functions (such as triangular, trapezoidal, Gaussian, etc.)
having one-to-one correspondence with linguistic labels, and by a five-step
inference algorithm consisting of fuzzification, premise conjunction, implication,
aggregation, and defuzzification. First four steps of this algorithm result in the

expression of the jth fuzzy output F(y,) of the system:

R N

F(y,) - U[[nll„ (x; ))fi Yjr ],r=l\ \ i=l

where 2; and ¥, denote the membership functions of the ith input variable

and jth output associated with the rth rule, respectively, x, denotes the

numerical value of the ith input variable, and N, U denote the operators called

t-norm and t-conorm, respectively.
The inference algorithm can be specified to meet one’s needs by the selection

of a suitable t-norm (minimum, product, etc.), t-conorm (maximum, probabilistic
sum, etc.), and defuzzification method (centroid, mean of maxima, etc.). An

overview of different t-norms and t-conorms as well as of defuzzification

algorithms is given in ).

(1)
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Although the number of different types of fuzzy systems that can be obtained

by combining different t-norms, t-conorms, and defuzzificaton methods is large,
a separate family of fuzzy systems is well distinguished, being obtained by
specifying the output membership functions as the functions of inputs (usually as

a linear combination)

N

Y (X Xy ) =OO +Xanxi-
il

The output membership functions of Sugeno systems represent a compromise
between standard fuzzy and mathematical systems and such systems are usually
regarded as piecewise linear input-output mappers. The center-of-gravity
defuzzification in case of Sugeno systems reduces to the weighted average

(fuzzy-mean) method.

Finally, as can be easily seen from Eq. (1), a fuzzy system having several

outputs can be decomposed into M multi-input single-output (MISO) systems,
that in many cases relieves the implementation and development of fuzzy
systems/algorithms.

3. ADAPTATION IN SUGENO SYSTEMS

3.1. Gradient descent

Most fuzzy system adaptation approaches rely on gradient descent

optimization by minimizing the objective function

e(k) =š[y(k) -3G9P,

where y(k) denotes the measured fuzzy system output and y(k) is the target

value for y(k) at the moment k.

The output of MISO Sugeno systems with product operator for conjunction
and implication, sum operator for aggregation, and Gaussian input membership
functions x; given by

_(Xi-c,'r)2

( —

20',',—2
M; x )=e

is calculated by making appropriate replacements in Eq. (1) and applying
weighted average defuzzification

R

ZT, (ay, +a,,x,(k)+...+ayxy(k))
gylk) 22A Ai m

2T,
r=l

(2)

(3)

(4)

(5)
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where 7, is activation degree of the rth rule, given by

N

Tr = Hluir (xi (k))
i=l

The usage of above-mentioned operators makes the system differentiable and

the following laws for updating the parameters of the fuzzy system are used [']:

oe(k)
Cir(k +l)=Cir(k) — 5W,

dE(k)
O;(k+1)=0; (k)-

W,

de(k)
aO,(k + 1) =ao,(k) -0,m,

de(k)
|a,.,(k +l)= a;, (k) — O

W

These are obtained by applying the chain rule

g, (k +1) = ag, (k) &, (y(k) -F)2,
2.7, (k)
r=l

-
T (k

@y (k+l)=a,(k)-a(y(k)-O)LD
2.7, (k)
r=l

¢, (k+l)=c, (k)

7
k) X(k)-c,(k

— 01, ((k) - F(k)Yb, (k) — y(k)) AD O2%D
ZTr(k) O, (k)

r=|

o, (k +1) =O, (k)

—() - 58,()-y~B Gi®=i()7
Yok — % )
r=l

Application of the criterion (3) guarantees only minimization of the local

error, not necessarily the minimum value of the error calculated over the whole

measured space. That may be improved by a different minimization criterion

ensuring the minimization of the overall error if the learning rates are properly
selected:

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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leading to update laws with

K de(k)aezapkgi .
Ap=—a„ š

———

where p is the parameter to be updated.

3.2. Least squares

The consequent parameters of a fuzzy system can be adapted by other means

than gradient descent, notably by the least squares procedure. Denoting

T

0 =5
2.7,
r=l

and combining ¢, into a matrix

TRRBk..et etsÕrXx ]>

we obtain that Eq. (5) is equivalent to

y=Jo,

where

—

T
6 = [‘lol Bk s s BoR s Bpls Blg voers BiR vsss By vo+ss CNR ]T.

Therefore the output parameters can be estimated as

o=[sTs]a7y

3.3. Clustering techniques

Cluster is a group of objects that are mathematically more similar to one

another than to members of other clusters. Clustering is basically detection of

subspaces of the data space. The potential of clustering algorithms to reveal the

underlying structures in the data can be exploited for partitioning the input space
of fuzzy systems.

Fuzzy clustering methods allow objects to belong to several clusters

simultaneously, with a different membership degree. A large family of fuzzy
clustering algorithms is based on the minimization of the fuzzy c-means

objective function

(16)

(17)

(18)

(19)

(20)

(21)
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K H
2

Jzšš(phk)'"lx(k)—vhl
where H is the number of clusters, to find grades of membership x,, and

cluster centres v, 5
A parallel with the membership functions of fuzzy systems is obvious and,

indeed, input membership functions can be approximated from the projections of

M, onto the space of input variables x; by suitable parametric membership
functions. Of greatest interest of such algorithms is the Gustafson—-Kessel (GK)

clustering [’].
Fuzzy clustering appears more natural and gives more information about

fuzzy systems than hard clustering based on the classical set theory. However, in

addition to fuzzy c-means clustering, a hard clustering method, subtractive

clustering, 1s implemented in Fuzzy Logic Toolbox of MATLAB and is found

more suitable for system approximation in combination with the least squares

method.

4. FUZZY SYSTEMS WITH SIMPLIFIED INFERENCE

This section of the paper should be properly titled “Adaptation in standard

fuzzy systems”. However, deriving the adaptation algorithms for standard fuzzy
systems is an extremely complicated process. A reasonable compromise is

obtained by employing a product operator for conjunction and implication and

sum operator for aggregation; in this case centre-of-gravity defuzzification

transforms to the weighted average defuzzification. Output fuzzy sets are defined

as fuzzy singletons, characterized by a real number b,.
Defuzzified output of such a system is computed as .

žb,r, (k)

Y(k) =——
1,(k)
r=l

Despite all simplifications, Eq. (23) remains a standard fuzzy system,
although it can also be regarded as a special case of Sugeno systems and can be

derived fromEq. (5), if

Via, =R\ igl.. N,' r=IL..R

While it is a common practice to employ smooth membership functions in

association with Sugeno systems, triangular membership functions are preferred
in the standard case:

(22)

(23)

(24)
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X; —a:i tr

po”S <b,
ir _air

C; —X:
S

ir i

:uir(xi)—
b

, bir <xi <Cir’
Cir =oy

0, c;, <X;<aj.-

4.1. Gradient descent

Updating law for the consequent parameters b, in Eq. (23) is equivalent to

Eq. (11):

—

k
b, (k +l)=b, (k) -0 (y(k) -S) 2—.

2.7, (k)
r=l

Note that triangular membership function given by Eq. (25) is not continuous

and therefore we obtain different updating laws for each continuous part of the

function:

(1) if a,, <x; <b,,,then

a;, (k +1) =a;, (k) —o,(y(k) — ¥(k))(b, (k) — y(k))
RAD, (x; (k) = b, (k)

&
(x; (k) = a;, (k) by, (k) —a;, (k))

PRAC)
r=l

b;, (k +l)=b;,(k)

+04(»(k)- )b,(k) - y(k))—,—{—’—‘im,
zTr(k)

ir ir

r=l

c; (k +l)=c, (k),

(2)if b, <x; <c,,, then

a, (k+l)=a, (k),

b,(k +1) =b;.(k)

+a3(y(k)—i(k))(bxk)—y(k))%'-(-'i)—m,
zfr(k) ir ir

r=l

(25)

(26)

(27)

(28)

(29)

(30)

1)
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ck +1) = ¢,y (k) =ty(y(K) = )b,(k) = y(k))2
Y 7, (k)
r=ll

o
b@)

(c;y (k) -Xi (k))(c,'rk)~ a;, (k))

The derived algorithm, however, is not directly applicable. A set of

restrictions must be applied, part of which come from the definition of fuzzy sets,

e.g., b, cannot be bigger than c,, etc. Also the problem of “blank spots” may

cause difficulties, particularly in input space, with the inference engine. Other

restrictions are often required in order to retain transparency, e.g., to avoid the

occurrence of strongly overlapping neighbouring sets.

Another, more elegant way to reduce the need for learning restrictions,
proposed by Jager [°], makes use of the following definition of input membership
functions (note that this is not a rule-oriented notation as in all the previous cases,
but “neighbour-oriented”, resulting in a different training algorithm):

ja
X —a: M 3

j—lj—l’ ai"<x<ai’,
a; —aj

j+l
, a?” —-x , ,
j

—
i j jAI

Hi (x(k)=i—7—T, ai <x<aj”,
o T

0, a/"' <x<a/™.

Each fuzzy set is defined through the neighbouring fuzzy sets so that its edge

parameters b/ and c/ are determined by the centres of the neighbouring sets,

a/™ and a/"', respectively (Fig. 1). Thus, the overlap height of 0.5 is always

maintained.
_

For consequent parameters, Eq. (26) is still valid. However, since

R

>.7,(k)=l,
r=l

Fig. 1. Neighbour-oriented definition of triangular membership functions

(32)

(33)

(34)
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it can be neglected and we have

b,(k+l)=b,(k)—a,(y(k)—-y(k))T, (k).

Derivation of update formulas for input parameters leads to the following
rules

(1) ifa/™ <x, <a/, then

a(k+l) =a (k) -0I-0
aij (k)- a,'] (k)

; R(u!™) ROl
1(x; (k) % i

x —l———l—— Tr'(k)(br'(k)—y(k))— T,'(k)(br/(k)—y(k)) ,L’ x(k)) Zl z] ]

aij(k+l)=a,j(k)—os2M
aij(k)_a,'j+ (k)

; R(u/*) R(uF)
Wl (x;(k) T} ’

X — T(k)b,(k)- y(k)- >7t (k)Xb,(k)- y(k))|,[u/ (x;(k)) Zl Zl J
where r’=1,..., R(u/) refers to rules having A/ in their premise.

4.2. Least squares

The least squares algorithm in case of simplified inference is even more

straightforward than in the Sugeno case. Equation (23) is equivalent to Eq. (19) if

6=[b.b,,...b |

For computing the estimatedconsequent singletons, Eq. (21) is applied again.

4.3. Clustering techniques

For standard systems, membership functions cannot be directly obtained from

the projections of the fuzzy cluster membership degrees onto input space(s). That

is because while Sugeno rules themselves result in linear input-output mapping,
in standard systems the linear relation is a consequence of the interpolation
between the neighbouring rules ['°].

Common practice, therefore, is to place the centres of the triangular
membership functions (Fig. 2, solid line) to where the estimated membership
function projections ~ (dashed line) intersect and to add two additional sets at

2) if a/ |(2) ifa/ <x, <a!™, then

(35)

(36)

(37)

(38)
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the extreme points of the domain. Similarly to Jager algorithm, overlap height of

0.5 1s permanently maintained.

5. A SAMPLE SYSTEM

Perhaps the main area of application of fuzzy systems is approximation of

complex systems. The number of rules, however, grows exponentially with the

number of fuzzy sets and input variables. This is the reason why in fuzzy
applications the number of inputs is usually limited to five and the number of

antecedent fuzzy sets per variable does not exceed seven ['']. However, it is

shown that most fuzzy systems do not possess universal approximation property
if the number of antecedent sets (the number of rules) is limited ['*]. A number of

complexity reduction algorithms have been developed to preserve the

approximation properties of high-dimensional fuzzy systems ["].
On the other hand, popular benchmarks employed in testing of adaptation

algorithms such as the Jang “sombrero” function ['*]

si 1/ 2

F
n(4/ x, +x22)

/ 2
X

20
,+x2

the Rosenbrock function ['s]

F (%, %,) =100(x, —x7)+(1=x,)7,

or the fuzzy function used by Takagi and Sugeno ['°], are two-variable functions.

Indeed, the problems that plague the modelling of complex systems do not derive

so much from the deficiencies of the modelling algorithms than from the

architecture of fuzzy systems. For transparencydetection, two-dimensional space
is obviously the most suitable environment (particularly for Sugeno systems).

Summing up, the scheme used here for comparison of the different adaptation
techniques employs the single-input single-output fuzzy system introduced in

['"]. It is a standard fuzzy system with a minimum operator for conjunction and

implication, and maximum for aggregation and center-of-gravity defuzzification.

Fig. 2. Partition for standard fuzzy systems derived from GK clusters.

(39)

(40)
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Input x and output y have been partitioned into 6 and 5 fuzzy sets (denoted by
linguistic labels mfi), respectively (Fig. 3). The parameters of these fuzzy sets

and the system rulebase (R = 6) have been chosen so that the resulting curve

(Fig. 3) includes a steep rise, making achievement of a good approximation
difficult. The input signal has been discretized uniformly with the step of 0.05, so

that the resulting training data set consists of 201 samples.

6. MODELLING AND RESULTS

It is a common practice to combine the algorithms for the adaptation of

antecedent and consequent parameters to reduce the required human factor in the

generation of the model as much as possible. Most popular combinations are

clustering with the least squares procedure and gradient descent with least

squares, ANFIS ['*]. In the result, only the number of the rules of the model must

be specified by a human expert since combined algorithms are capable to take

care of everything else. In addition, special algorithms, such as compatible
cluster merging or clustering with validity measures for the determination of the

number of the rules, have been proposed [*] to take over also this task.
ANFIS as well as subtractive clustering with least squares are implemented

through the Fuzzy Logic Toolbox of MATLAB; Gustafson—Kessel clustering
with least squares is available in FMID Toolbox for MATLAB [*]. Training

Fig. 3. A sample system: mfi denotes inputmembership functions.
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algorithms for standard systems (gradient descent, for both antecedent and

consequent parameters, and GK clustering with least squares) were implemented
by the authors, as they are not commonly available. It may be noted that GK

clustering can be obtained by a simple modification of fuzzy c-means algorithm
supplied with MATLAB.

Because the sample system is transparent, we also have the optimal number of

input fuzzy sets that is 6 in the standard and 5 in the Sugeno case.

6.1. Sugeno modelling

6.1.1. ANFIS

ANFIS is initialized with uniformly distributed input membership functions

and arbitrary nonzero consequent parameters. Low approximation error is usually
achieved, provided that a sufficient number of input fuzzy sets is specified and a

sufficient number of training epochs is conducted. Both numbers are input
parameters of the ANFIS algorithm and can be specified by the user. It is

possible to obtain relatively transparent model (Fig. 4) but the result is almost

unpredictable. A transparent model was obtained with a number of input sets that

reflects best the underlying nature of the modelled system. That is not final,
however, as ANFIS’s transparency is subject to overtraining.

System’s transparency is obviously related to overlapping of the input
membership functions. If those overlap strongly (Fig. 5), the rules are not local

linear approximators of the global nonlinear function; that is most common with

ANFIS, although the model is numerically adequate.

Fig. 4. ANFIS approximation (RMSE = 0.0180).
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6.1.2. GK clustering and least squares

Low approximation error and good transparency of the model (Fig. 6) are

universal properties of the models obtained by this method, even in cases where

the number of clusters (Fig. 7) does not directly reflect the nature of the system
(Table 1).

Fig. 5. ANFIS approximation (RMSE = 0.0128)

Fig. 6. Approximation with GK clustering and least squares.



89

6.1.3. Subtractive clustering and least squares

Input partition obtained from subtractive clustering uses cluster centres for

defining the membership function centres and the same spread for all functions

that is estimated from clustering parameters.
We obtain lower error if we specify larger number of clusters (Table 2). The

error 18, however, relatively high compared to other techniques and the obtained

model is generally non-transparent (Fig. 8). As the least squares part is identical

for both observed least squares clustering techniques, obviously, the subtractive

clustering or the technique to obtain membership functions from identified

clusters are to be blamed for that.

Fig. 7. Input approximation from GK clusters.

Table 1. Approximation error with GK clustering and least squares

No. ofclusters I RMSE

4 0.0197
3 0.0164

6 0.0121
8 0.0114

No. ofclusters | RMSE

4 0.1560

5 0.0431

6 0.0311
8 0.0161

Table 2. Approximation error with subtractive clustering and least squares
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6.1.4. GK clustering and ANFIS

ANFIS was initialized with the input partition shown in Fig. 7 and arbitrary
nonzero consequent parameters and is able to improve the model both numerically
(RMSE = 0.0039) and from the point of view of interpretation (Fig. 9).

It is, however, quite clear that improved transparency is a direct result of

separation of the input fuzzy sets that is not generally desired.

Fig. 8. Approximation with subtractive clustering and least squares.

Fig. 9. Function approximation with ANFIS using GK clustering and least squares model
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6.2. Standard modelling

6.2.1. GK clustering and least squares

GK clustering with least squares as in the Sugeno case may extract a perfectly
transparent model (Figs. 10 and 11) although the approximation error is some-

what bigger (Table 3). The latter is, however, not surprising as the number of

adjustable consequent parameters is smaller.

Fig. 10. Approximation with 6 GK clusters and least squares.

Fig. 11. Approximation with 5 GK clusters and least squares.
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6.2.2. Gradient descent

For standard systems we use Jager gradient descent algorithm. Gradient

descent can easily get stuck in a local minimum (Fig. 12, RMSE = 0.0779 after

250 epochs) that in ANFIS is handled by using least squares for consequent

parameter learning. Here we propose another way to deal with that unpleasant
symptom.

In the first run, only system’s consequent parameters are trained by Eq. (35)
until further training brings no significant decrease of approximation error

(Fig. 13, RMSE = 0.2159 after 150 training epochs). After that, full algorithm is

applied that reduces the RMSE of the approximation to 0.0232 in 100 epochs
(Fig. 14). This is a small error for a standard fuzzy system. Consequent parameter
training here can be basically regarded as rule learning.

Fig. 12. Function approximation with full Jagergradient descent algorithm.

No. of clusters I RMSE

5 0.0836

6 0.0586
7 0.0386

8 0.0380

Table 3. Approximation error with GK clustering and least squares
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Fig. 13. Fuzzy system after consequent parameter training

Fig. 14. Final fuzzy system.
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7. CONCLUSIONS

The main conclusion is that transparency is not a default property of fuzzy
systems. Related to how the neighbouring input membership functions of the

system overlap, the way to handle the issue depends on the type of the

membership function and on the system itself.

In case of a standard fuzzy system with triangular fuzzy sets the system’s
transparency can be simply maintained by forcing the neighbouring input
membership functions to intersect at the membership degree smaller or equal to

0.5. The issue is somewhat more complicated in case of Sugeno systems because

of the non-compact fuzzy sets. However, we are able to obtain a transparent

system more certainly if for each fuzzy rule there is a respective region within the

domain of input variables that obeys only this particular rule and no other rules.

Assuming that the clustering method is able to reveal the nature of the

modelled system/process satisfactorily, in combination with the least squares we

obtain most likely a system that is transparent (least squares do not distort or

improve transparency). Gustafson—Kessel clustering has proved to be such a

method. Not less important is the fact that being one of the fuzzy clustering
methods, the cluster membership degrees can be directly used to determine

membership functions. This approach works both for standard and Sugeno
systems.

Usually, someone’s interest in trainable standard fuzzy systems is due to the

system’s linguistic interpretability, while accuracy is not of high priority. In this

case, for standard systems the gradient descent method is the best. The Jager
algorithm is also a good example of controlled gradient descent to maintain

transparency through the definition of the input membership functions.

If the only goal is as low approximation error as possible then obvious choice

would be ANFIS or some other, maybe even a non-fuzzy method, if it serves the

goal better.

In respect of the training data, gradient descent approaches seem to be more

universal as they can be used for building fuzzy systems from scratch with large
amounts of data (usually referred to as batch processing) or for improving an

existing model (on-line training). Clustering algorithms and least squares
estimation methods are basically batch procedures (although references to

recursive least squares exist in literature) and are computationally cheaper.
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HAGUSATE SUSTEEMIDE INTERPRETEERITAVUS JA
ADAPTEERUVUS

Andri RIID jaEnnu RUSTERN

On vorreldud hédgusate siisteemide enamtuntud héédlestusalgoritme pöörates
erilist tdhelepanu treenimisjirgsele lingvistilisele interpreteeritavusele. Kui

slisteemi adapteeruvuse méir on hinnatav aproksimatsiooniveaga, siis lingvisti-
lise interpretatsiooni paikapidavuse (ldbipaistvuse) hindamiseks iiheselt mdiste-

tav moot puudub ning tuleb rahulduda vaatlusega. Sellist vaatlust saab teha

maksimaalselt kolmemootmelises ruumis. On selgitatud, kuidas higusate siistee-

mide sisend- ja viljundparameetrite hddlestamise algoritmid (suurima languse
meetod, vihimruutude meetod, klastrite meetodid) mojutavad siisteemi inter-

preteeritavust aproksimeerimisvea minimeerimisel. Erinevaid algoritme on

vorreldud modelleerides lihtsat iihe sisendi ja iihe véljundiga hédgusat siisteemi.

Higusa siisteemi ldbipaistvus soltub sisendi litkmesfunktsioonide iilekattumise

määrast. See järeldus on iildistatav ka mitme sisendiga siisteemidele.
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