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Abstract. Gain-bandwidth independence over a wide range of voltage gain levels is available by
employing feedback around a transconductance amplifying element in place of a voltage
amplifying element. It is shown that only minor changes are required to the architecture of standard

3-stage voltage operational amplifier circuits to obtain all the advantages of this new configuration,
which also include improved voltage slew rates, whilst retaining two high-impedance input
terminals.
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1. INTRODUCTION

General-purpose voltage operational amplifiers (VOAs) with internal

dominant-pole compensation are widely used to obtain voltage gain, but suffer

reduced bandwidth at higher gain through the well-known restriction of a

constant gain-bandwidth product [?]. In contrast, current feedback amplifiers
(CFAs) offer constant-bandwidth operation and significantly increased slew rates

compared to standard VOA designs, but have not become commercially popular,
possibly because of their asymmetrical input terminal impedances and relatively
low loop gain due to fewer gain stages [*]. This paper introduces a new kind of

operational amplifier, the transconductance feedback amplifier (TFA), in which

the normal 3-stage VOA architecture is modified to produce gain-bandwidth
independence and improved slew rates, in addition to the standard attributes of

two high-impedance input terminals and internal compensation.

2. THEORETICAL

Stabilization of an amplifier’s overall transfer function is governed by both

the feedback network and the nature of the gain element employed to provide the
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forward path gain, since it influences the overall pattern of bandwidth behaviour,

particularly in regard to source and load sensitivity [*’]. As there are four

possible amplifier target configurations (voltage, current, transimpedance, and

transconductance), then employing all four amplifying element types in turn to

provide the forward gain results in 16 possible combinations. Examination of

loop-gain equations then permits the detailed behaviour of each particular
amplifier and feedback network combination to be studied. Focusing on the case

of stabilized voltage amplification utilizing feedback via the familiar potential
divider arrangement of R, and R,, (Fig. 1), results in the four cases listed in

Table 1 for the four different types of amplifying element. The term G,

represents the asymptotic closed-loop voltage gain at high loop gain, given by
1+ R, /R, in all four cases.

We see from Table 1 that employing a voltage-controlled voltage source

(VCVS) as the active gain element results in the well-known combination of a

loop gain involving the inverse of the demanded closed-loop gain G,,, thus

producing a constant gain-bandwidth product. Adopting a current-controlled

current source (CCCS) as the amplifying element has previously been shown to

generate a constant loop gain and a constant bandwidth, but at the expense of

modest input impedance due to the necessarily low input impedance of the

Fig. 1. Stabilized voltage gain using different amplifying elements

element gain resistance

VCVS A, /G, GBP constant High

CCCS Ai BW always constant Low

CCVS Aa /R, BW potentially constant Low

VCCS AR, BW potentially constant High

Table 1. Bandwidth behaviour for different amplifying element types when configured as voltage
amplifiers
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current amplifying element [°]. In general, either input or output impedance
levels will be mismatched for constant-loop-gain operation and so require input
or output buffers. Input matching is preferable, as additional circuitry at the input
will adversely affect noise performance, whereas output buffers operate at higher
signal levels and detract less from overall performance. Of the remaining two

cases (current-controlled voltage source CCVS and voltage-controlled current

source VCCS), both will give rise to gain-bandwidth independence when one of

the gain-defining component values is held constant to produce a constant loop
gain. However, adoption of a VCCS active element will result in a much higher
input impedance, making it an ideal formulation for a constant-bandwidth

voltage amplifier. A similar approach using a current amplifying element in a

transimpedance configuration to achieve gain-bandwidth independence through
to the microwave region was recently reported by the author [°].

Figure 2 illustrates how the basic structure of the TFA maps directly onto a

standard 3-stage VOA architecture, in which the differential input stage and

single-ended second stage together provide the required transconductance gain.
For a transconductance gain A, between input and feedback connection, the

closed-loop voltage gain G,, of the configuration will be

G. =

Forwardgain A, (R, +R,) _R +R,
Y

I+Loopgain I+AR R
'

for high loop gain, given by AR,. Keeping R, constant and defining closed-

loop voltage gain by varying R, will therefore result in constant loop gain and

hence gain-bandwidth independence. Unlike a CFA, the new connection presents
two high-impedance input terminals and functions by generating a truly constant

loop gain without introducing variable input attenuation [’].
Constant-loop-gain amplifiers differ from constant gain-bandwidth-product

amplifiers in respect of their forward gain behaviour. As shown in Fig. 3, the

level of forward gain A((R,; +R,) increases to accommodate the higher

Fig. 2. Voltage amplifier configured from a transconductance amplifying element

(1)
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demanded closed-loop gain, leaving the loop gain AR, constant. As a

consequence, the overall 3dß bandwidth BW remains constant as long as

elevated values of gain-defining resistors and parasitic capacitance at the

feedback node do not form a limiting secondary pole, causing reversion to a

constant gain-bandwidth product for further gain increase.

As closed-loop stability is determined by loop-gain behaviour, the new

configuration is advantageous in that only the (lower) level of loop gain itself

needs to be dominant-pole compensated, rather than the whole of the available

forward gain, as for the traditional configuration. This avoids over-compensation
at low gains and permits the TFA loop-gain breakpoint to be set at a much higher
frequency than otherwise, requiring a smaller compensation capacitance and also

producing a significantly increased slew rate.

3. CIRCUIT SIMULATION

The new TFA has been investigated by ‘SPICE’ simulation using a standard 741

VOA circuit model [*], but with an updated symmetrical output stage for improved
offset performance. Feedback is taken directly from the output of the 2nd stage, with

the unity-gain output stage acting only as an open-loop buffer to isolate the load. For

purposes of exploring comparative behaviour, dominant-pole compensation is

provided by a capacitor at the differential input-stage load, whereas final designs
would be optimized to utilize capacitance values in the range available in monolithic

fabrication. In common with CFAs, production TFAs would have pre-determined
compensation and recommended loop gain with no access to compensation
components, validating comparison to the internally-compensated 741 from which it

1s directly derived.

Figure 4a shows the frequency response of the TFA-connected 741 with a

low-frequency loop gain setat 55d8 (R, =2so€) drivinga load of 1 k€ 2in

Fig. 3. Gain levels in a constant-loop-gain amplifier.
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parallel with 100 pF over a gain range of 6 to 40 dB (R, =2SOQ to 25 k). The

compensation capacitor is set at 125 pF to give an almost identical unity-gain
bandwidth to a standard 741. We see that the TFA-741’s 3 dB bandwidth remains

very close to 1 MHz up to gains of 30 dB, beyond which it becomes influenced

by the feedback-node pole and starts to revert back to constant gain-bandwidth-
product operation. At a gain of 40 dB the new configuration has a 3 dB

bandwidth of 400 kHz, in contrast to a 741 circuit in conventional mode, which

displays a bandwidth of only 12.5 kHz at this level of gain, but with a very

slightly greater loop gain. Figure 4b shows the well-controlled transient response,
where the output swings through 20V in 2 pus with a maximum slew rate of

12 V/us, a twentyfold improvement over the very same devices and circuit when

employed as a standard 741. Operation in the inverting mode produces
substantially similar performance.

Fig. 4. Performance of TFA-connected 741 circuit with 55 dB loop gain: (a) frequency response
(b) squarewave response (100 mV input).
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Output DC offset caused by input-stage mismatch is nulled out in exactly the

same way as for a standard VOA configuration. The simple open-loop buffer

used in this particular example displays a 2 mV zero-signal offset coupled to a

gain error of 0.2% when driving a 10 k€ load, increasing to 1% for a 250 €2 load,

suggesting the use of a high-accuracy unity-gain output buffer with 100%

feedback for improved offset and load driving in a finalized design. Operation of

the TFA as a voltage follower is arranged by setting R, to zero, with R, still

setting the loop-gain.
The TFA-741 and traditional configurations should be compared on the basis

of operating bandwidth at the same closed-loop gains with an identical loop-gain.
For example, the particular 741 used here exhibits a forward gain of 100 dB,

resulting in a loop-gain of 60 dB and a bandwidth of 12.5 kHz when operating at

a closed loop gain of 40 dB. For the TFA connection, when setting an identical

loop-gain (LG) of 60dB the dominant pole will be at 800 Hz (effective
compensation capacitance of 325 pF), resulting in a bandwidth for 40 dB closed-

loop gain of 350 kHz, as shown in Table 2.

Reducing the TFA loop gain to 40 dB (compensation capacitance 6 pF) results

in a low-gain bandwidth of 5 MHz (limited by the 741 secondary poles),
contracting to 800 kHz at a gain of 40 dB and 85 kHz at 60 dB closed-loop gain,
in contrast to the standard 741 circuit which can only achieve a bandwidth of

12.5 kHz under identical conditions of 60 dB gain with 40 dB loop gain. An

additional consequence of the TFA configuration is that the whole of the loop
gain is available for feedback action up to a much higher frequency than the

standard configuration under identical conditions; here 800 Hz for 60 dB loop
gain, as against typically 5 Hz for a 741.

Bandwidth, kHz
Gain,

dB TFA-741 TFA-741 Standard

40 800 350 12.5

35 1200 480 20

30 2300 570 35
26 3500 650 60
21 4600 700 100

17 5000 700 150

12 5000 700 250

9 5000 700 350

6 5000 700 550

Table 2. Performance comparison for new TFA topology and standard VOA
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4. CONCLUSIONS

Configuring a standard VOA as a TFA results in both gain-bandwidth

independence and increased slew-rates from the very same devices and an

otherwise identical design. For example, the new TFA-741 produces a bandwidth

of 350 kHz for a closed-loop gain of 40 dB and loop gain of 60 dB, dramatically
outperforming the standard VOA-741 which only returns a bandwidth of

12.5 kHz under identical conditions. The new approach offers significant

opportunities for upgrading many classical operational amplifier designs.
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