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Abstract. This paper describes experimental investigation of a large area 6H-SiC Schottky diode

fabricated with diffusion welding technology. A new model for the dependence of the barrier

height on the temperature is presented.
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1. INTRODUCTION

Conductive films are used to provide interconnection between contacts in

devices and between devices and the outside world. Usually the contact 1s a metal

layer on a semiconductor substrate, which forms with the substrate a certain type
of junction (interface). Depending mainly on the barrier height between the metal

and the semiconductor, two extreme types of contacts from the point of view of

the current are created — nearly linear type (ohmic contact) and strongly non-

linear type (Schottky contact).
In this paper we describe briefly a new manufacturing technology of a large

area 6H-SiC Schottky structure, protected by an Estonian patent [']. For the same

Schottky structure, the measurement scheme for defining the U-I characteristics

at various temperatures is introduced and the barrier height dependence on the

temperature is discussed.

2. MANUFACTURING OF THE SCHOTTKY STRUCTURE

Using our equipment UDS-5 for diffusion welding [*], we succeeded to

produce during one high temperature step simultaneously two-sided metallization

for a 6H-SiC substrate which has at the top surface a C-face and in the bottom
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surface a Si-face. For the metallization, the 99.99% clean Al film with the

thickness of 0.05 mm and diameter of 8 mm was used (for both sides of the SiC

pieces). The SiC wafers (diameter 35.0 mm, thickness 0.33 mm, net doping
concentration 4 x 10"® cm™ (Np-N,), orientation 3.5° off {oool}, polished
surface on the C-face) were purchased from CREE Research Inc., USA. Before

the metallization, the wafers were cut into pieces 1 X 1 cm. Among different

surface treatment processes, the following proved to be the best. SiC pieces were

first cleaned during 10 min in a NH,OH:H,O,:H,OO (1:1:5) solution, then

10 min in HCI:H,O,:H,O (1:1:5) solution at 70°C, followed by ultrasound

cleaning in acetone and ethanol. The Al film was cleaned during 1 min in H;PO,
(450 ml), CH3;COOH (90 ml), HNO; (18 ml), and H,O (30 ml) solution at 60—

70°C, followed by ultrasound cleaning in acetone and ethanol. The duration of

the diffusion welding process for metallization was 500s under pressure of
50 MPa at a temperature of 600°C. The formed contact had an excellent

mechanical bond for both C- and Si-faces.
As a final result, at the C-face a Schottky contact was formed with the barrier

height (U-I measurements; temperature 293°K) @, equal to 0.66 V, which is

close to published data for unannealed Al-C-face-6H-SiC Schottky barriers [*].
At the Si-face (the bottom of the pieces) the Al film formed the ohmic contact.

The contact areas in both cases were about 50 mm” (this was probably the first

successful forming of large area contacts to a 6H-SiC substrate).

3. MEASUREMENT SET-UP

The determination of the U-I characteristic means defining of the function

Uak = f (I,) at constant temperature (U ,x
is the applied anode—cathode

voltage of the diode structure and 7, is the anode current). Simplified picture of

the measurement set-up is presented in Fig. 1. Measured structure 1 is placed
between press contacts 2 and 3. The whole block is placed in a thermal chamber.

Fig. 1. Measurement set-up: 1 - SiC structure; 2, 3 — pressure contacts; 4 —thermal chamber;
5 — heating element; 6 —transformer; 7 — thermocouple; 8 — current source; 9 — switch; 10—

voltmeter.
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The heating of the structureup to the demanded temperature takes place with the

help of a bottom electrode which has an electrically isolated built-in heater 5. The

temperature of the heater is regulated with the transformer 6. The temperature is

checked with the help of a thermocouple 7. The U~/ characteristic is obtained by
initializing the current through the structure and recording the corresponding
voltage drop in the structure with a numerical voltmeter 10. The regime “on-off”

is realized with the help of a switch 9. To avoid the self-heating effect of the

structure during the measurement, the measurement time is limited to 3 seconds.

4. RESULTS AND DISCUSSION

To define the barrier height from the U-I characteristic, a standard procedure
has been used. The temperature dependence of the Schottky barrier heights,
given in the literature (e.g., [*]), is linear. Our experiments proved this

conclusion. The dependence of the barrier height on the temperature is described

as

Dy, (T)=Dyg,+aT,

where @,, =4.68 x 10V and a=2.26 x 10~ 1/K.

The measured and calculated barrier height values are shown in Fig. 2.

The linear model [Eq. (1)] agrees fairly well with the measured results over

the whole measured interval. In the literature, the values @, =0.37 V and

a=l.lx 10" 1/K are reported for 6H-SiC Schottky barriers [*]. Figure 2 shows

that at room temperature the linear models coincide ideally. The different slopes,
we guess, 1s caused by the difference in the technology used for manufacturing
the Schottky barrier. Therefore a serious question arises: how sensitive is the
barrier height (interface area) to manufacturing technology? Our previous
investigations [>>°] show that the diffusion welding technology (DWT) generates
additional dislocations near the surface inside the interface area between the

metal and the SiC substrate (thickness about 5 nm). Such type of interface area

with increased number of dislocations is missing in contacts manufactured with

Fig. 2. Dependence of the barrier height on the temperature: — linear model, Eq. (1); — - — linear

model [*]; ¢ — measured values.

(1)
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traditional sputtering techniques. We guess that the temperature dependence of

dislocations inside the interface area influences the temperature dependence of

the barrier height and makes it nonlinear. Unfortunately, the temperature
behaviour of dislocations is still unclear and needs basic material research.

5. CONCLUSIONS

The technology of manufacturing with DWT large area power 6H-SiC

Schottky diodes and the U-I measurements have been described. Using the

measured U-I characteristics, the barrier height and its temperature dependence
have been determined. For the temperature dependence of the barrier height, a

new model has been presented. An assumption has been made that the

temperature dependence of dislocations inside the interface area influences the

character of the dependence of the barrier height on the temperature. This

assumption needs further microscopic and audio-frequency modulation

investigations of the interface area.
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SUUREPINNALINE 6H-SiC SCHOTTKY DIOOD

Toomas RANG Oleg KOROLKOV ja Mihhail PIKKOV

On kirjeldatud difusioonkeevituse meetodil loodava suurepinnalise 6H-SiC

Schottky dioodi valmistamistehnoloogiat ning selle struktuuri pinge—voolu
karakteristikute modGtmistehnikat erinevatel viliskeskkonna temperatuuridel.
Mõõtmistulemuste põhjal on määratud Schottky barjddri korguse tempera-
tuurisõltuvus.
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