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Abstract. Extending our previously published model of charge carrier transport and mobility, a

procedure for calculation of the semiconductor thermoelectric coefficients is developed. It is shown

that the phonon drag strongly influences the Seebeck and Peltier coefficients even at high
temperatures, up to 400 K for Si and 600 K for SiC. As a new feature, the presented model gives a

possibility to investigate the influence of the electron-hole scattering on thermoelectric coefficients.

A strong underestimation of non-isothermal V7-proportional current density terms in most of the

semiconductor device simulators is pointed out.

Key words: Seebeck coefficient, Peltier coefficient, Soret coefficient, phonon drag, electron-hole

scattering.

1. INTRODUCTION

It is well known that electron (& =e¢) and hole (@ =h) current densities j,,
deduced from irreversible thermodynamics, can be expressed as follows:

ja — Lla(—V¢a) + L2a (_VT)’

where ¢, is the quasi-Fermi potential and 7' is the crystal temperature, common

for lattice, electron, and hole subsystems. The transport coefficients L,, and L,,

are to be determined either empirically from experiments or theoretically from

the kinetic transport theory based on the Boltzmann transport equation (BTE). In

terms of electrical conductivity o, and absolute thermoelectric power (the

Seebeck coefficient) S,, Eq. (1) can be rewritten as

(1)
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Stratton ['*] was probably the first who examined the non-isothermal current

equations from the viewpoint of the theory of the semiconductor devices. Later

on, Nakagawa and Navon [] referring to Stratton [°7], used the non-isothermal

current term in their gate-turn-off thyristor simulations. However, the constant

value of the Seebeck coefficient |S,l=kp/2g, used in [’] and later in several

other publications, strongly underestimates the thermoelectric effect in

semiconductors (k, is the Boltzmann constant and g =|el is the unit charge).
A detailed treatment of various aspects of non-isothermal modelling of the

semiconductorproblems can be found in recent papers by Lindefelt [*°].
In this paper we report some new results on the calculation of the

thermoelectric coefficients obtained by extending our earlier model of charge
carrier transport ['] based on the well-known Kohler’s variational principle.

2. BASIC THEORY

For the isothermal case, it was shown in ["®] that correct accounting for

electron-hole scattering (EHS), i.e., regarding both electrons and holes as moving
scattering centres, converts current equations into so-called cross-term form

ja = Mallo2 (—Vq)a) — qnfl)uaz. (_V¢fl )

=qng o E— qakßTluaZV”a +qPkBT:Ua.%V",B

with two (three) mobility-like transport coefficients «, =/ — Zp; Here

subscript # marks a carrier type opposite to the o-type carrier, n, is the

density of the «-type charge carriers, E is the electric field vector, and ¢,

denotes «-type particle charge sign (i.e. g, =—l for electrons and ¢, =1 for

holes). According to Onsager’s reciprocity relationship, n,ugz, =ngtl,;.
It should be emphasized that a more detailed treatment of the thermoelectric

power in case of non-negligible EHS causes similar splitting of the Seebeck

coefficient and, consequently, the splitting of the term proportional to V7T in

Eq. (2) as well. However, throughout this paper we shall follow the traditional

interpretation of S, in accordance with Eq. (2). Nevertheless, in the BTE

solution using the variational principle, we actually account for the influence of

EHS and all three driving forces, namely the gradients V¢, and VT directly

and gradient V@, for each carrier type through the ratios R,; specified below

by Eq. (16).
The calculation procedure of the non-isothermal transport parameters

implemented in this work is based on Kohler’s variational method for the

solution of the BTE for the electron and hole, coupled through the electron-hole

collision integral. As in ['], we assume isotropic parabolic bands for both

(3)
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electrons and holes. The quasi-Fermi potential gradients V¢, and the

temperature gradient VT are assumed to be weak and collinear, and the

magnetic field to be zero. The referred isothermal transport and mobility model

[7] and a relevant computer code constitute the mathematical basis of the present
study. Here we will describe only some new extensions needed for the

calculation of the thermoelectric coefficients.

The central position among the charge carrier non-isothermal transport

parameters occupies the Seebeck coefficient S,. Sometimes, especially for

convenient scaling of the dependence on the temperature, the Peltier coefficients

IT, may be considered instead of S,. From Kelvin’s formula we have

,=TB,.

The Soret! coefficient D ,
as used by Stratton ['?] for the description of the

thermal diffusion contribution to the non-isothermal current flow in

semiconductors, is straightforwardly related to the Seebeck coefficient

0,9
Da =d44—3—.

qn,

In case of conventional non-cross-term formulation we obtain D =g,u,S,,.
In terms of variational parameters, the transport coefficients in Eq. (2) may be

written as follows:

N
E)

0,=4cB
r=o

Jad
Õ

AE) p(7)OoSa =_7:—2(4)Cm par ,

which enable us to define the Seebeck coefficient as

&
(E) g> ce Ba

S -qa r=o

“ aTŠ wWaw'
r=

where N is the order of approximation of the solution.

The variational parameters c'.’ are coefficients of the polynomial function of

the reduced carrier energy €,

I Sometimes the Soret coefficient is defined as naDZ
,»

Where DZ is called the thermal diffusion

coefficient.

4)

(5)

(6)

(7)

(8)
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This function was used as a trial function for Kohler’s variational solution of

the BTE. The limit N>o corresponds to the exact solution of the BTE.

Fortunately, successive approximations reveal a rapid convergence after the first

order correction and, therefore, often the first and in some cases even the zero

order approximation provide practically acceptable accuracy of the examined

transport parameters.

Instead of explicit calculation of the coefficients ¢\, the sums in Egs. (6)-

(8) can be evaluated making use of the technique of the bordered determinants

introduced by Enskog [’]. In this case

N 1
}: E E

N 1
(E (T)

—

T»B =—=DP,
r=o G

and in accordance with Eq. (7)

(T)

oo gDt
“

qT D&

For the first order approximation (N =1) the “electrical” and “thermal” 5 X 5

bordered determinants for electrons and holes and the “scattering” 4X 4

G-determinant become:

0 — POD 0 BED 0

+RBD n SR, bei
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SRR farredbaibin
gy
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(10)
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The evaluation of the I'-elements of the scattering determinant has been

described in [’]. The coefficients Ry, introduced but not used in [] for

mobilities calculation, represent the ratio of the quasi-Fermi potential gradients
of the electron and hole

Rafl_—a¢a/&'
Semiconductor device simulation shows that R,z =-1 for the structure of

homogeneous quasineutral regions and, in average, for all the contact-to-contact

interval as well. Therefore in the present calculations we have assumed

R,s =—l. The carrier concentration-related terms BE) are calculated similarly

to the isothermal case ['] as

p —na (r+3/2)! Frry2 Na)

oom. GP A»

assuming that the effective mass m,, is isotropic and usingFermi integrals

17 j

zOO=2[——e,
jt exp(e—mn,)+l

with reduced quasi-Fermi energy 77, as a parameter.

The new “thermal” B’ -terms are to be calculated as follows:

=

5 VZ4+3/2 Na)fl(T) =k T-fi(E) {(r+_ r+3/2Vla)
> }. P

2) Fr+2Na)
-

Note that in case of N =O, Egs. (17) and (19), inserted into Eq. (8), yield for

Maxwell-Boltzmann statistics

sdaPa _ kas
E «™]BqT,BÄo) g2Na |

Equation (20) reveals that in zero order approximation the Seebeck

coefficients are EHS independent and the calculation of determinants in Eq. (12)
is actually not needed.

(15)

(16)

(17)

(18)

(19)

(20)
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Interrelating the reduced quasi-Fermi energies to the conduction and valence

band effective densities of state, N, and N,, two useful estimations may be

deduced from Eq. (20):

k NSe=—-—3—[£+ln—c], n, <Nce,
q (2 n,

k NS 5 =—B[3+ln——v—], n, <N,.
g (2 ny

Further, by introducing well-known functions of the temperature
3

2

Ney(T)= Nc3w,v3m[š%f<"]/> a rather weak temperature dependence of the

Seebeck coefficients follows:

Se=—k—B §+]niv£3_o_o_+§ln___T_
,

q\?2 n, 2 300 K

Sh:-k—B pnYO3 |
g|2 n, 2 300 K

However, measurements by Frederikse ['°] and Geballe and Hull [''] have

shown a remarkable rise of the thermoelectric power in Ge and Si single crystal
specimens at low lattice temperatures, typically below 100 to 200 K. The

explanation, suggested independently by Frederikse ['’] and Herring ['*], is based

on the effect of drag of the electrons and holes caused by non-equilibrium
phonons in the crystal. The strength of the phonon drag mechanism is

proportional to the ratio of phonon and electron or hole mean free paths [']
which rises rapidly at low temperatures due to the predominating increase of the

phonon mean free path. At very low temperatures, below 20 to 40 K, the sample
boundary scattering will limit phonon mean free path to the order of the crystal
size while the charge carrier mean free path continues to rise. Consequently, the

influence of the phonon drag on the thermopower will decrease.

The phonon drag has been modelled by adding an extra term ,Bg )ph to the

regular term ,Bg ) given by Eq. (19). Following Frederikse ['°] and Herring

['*"], we obtain

RlT ePS
(r+3/2)! #.l2(My)

where

Moy ol oD gy g(2) 22 2
, ~ ,

(21)

(22)

(23)

(24)

(25)
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Dimensionless factor AZ»
1N Eg. (25) characterizes the phonon drag force

kßA:phE;'/Z(—VT) in accordance with Herring's phonon-phonon scattering

theory ["]. In case of large crystals of cubic symmetry and negligible phonon

boundary scattering, according to ['*'*], the factor Ap» can be written as

follows:

-712

AHo Bgyl G Y
a.ph ”23/2(](8 : 300K)7/2 300 K

where E,, is the deformation potential constant for intravalley acoustic

scattering and u, is the longitudinal sound velocity.

In case of non-negligible phonon drag effect, Eq. (20) should be modified:

(T) (Ts-aP +Poomo ko(sp y

4
au

qT ,Bo(([š) oq2
na 3J;[' Aa.ph *

For use in device simulators, a more practical formula can be proposed:

k N, (300 K e
S,=q,-% ž+ln—c'—v—(—)+žln—Z—+Ca s

,

g |2 n, 2 300 K 300 K

where

c= Ema
37x (ky-300K)”"

Our calculations provide C,=429, C,=546 for Si, and C,6 =225,

C, =82.6 for 6H-SiC in the crystallographic direction perpendicular to the

c-axis. By that we wused the following sets of input data:

1) m,=l.lBsmy, m,;, =1.153m,, E,,=33¢€V, E,, =3B eV, and

u; =9.04x10° cm/s for Si, 2) m, =0.42m,, m, =1.0m,, E,, =E,, =lO eV,

and u; =12.6x10° cm/s for 6H-SiC.

3. RESULTS AND DISCUSSION

Generally, the Seebeck coefficient dependence on the carrier concentration,

doping, and temperature is of interest. Figure 1 shows calculated S, versus hole

concentration in order to demonstrate the applicability of Eqgs. (21)—(24) and to

check the possible first order corrections due to the influence of the carrier-

carrier and carrier-impurity scattering mechanisms through the determinants in

Eq. (12).

(26)

(27)

(28)

(29)
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In order to check the overall accuracy of the present model, especially the

phonon drag term, Fig. 2 compares the temperature dependence of the calculated

total Peltier coefficient (for mixed electron and hole conductivity) with

measurements in silicon by Geballe and Hull ['"].
The total Peltier (or Seebeck) coefficient is expressed as

S +0,5
Htot=TStot=T — —.

o-e+o.h

To obtain a reasonable fit to the measured results we used in Eq. (26), instead

of Herring’s theoretical limit 77>°, a weaker temperature dependence 7> as

suggested by Geballe and Hull ['']. Additionally, we selected proper values of

the deformation potential constants E,, and E,, to fit experimental curves at low

temperatures. In order to approach experimental points at the high temperature
intrinsic region where n, = n, — n;(T), we had to use gradually diminishing
ratio of mobilities b=, /, at higher temperatures (b=2.9 at 300 K and
b — 1.6 at 1000 K).

To our knowledge, only one paper considers the Seebeck coefficient

measurements in SiC [°]. In this work, the Seebeck coefficient of the nitrogen
doped n-type 6H-SiC has been measured in the hexagonal plane, applying
temperature gradient in perpendicular direction to the c-axis.

Fig. 1. Calculated Seebeck coefficient for holes in units of kg /q =86.17uV/K versus hole con

centration in intrinsic (donor concentration N, = 0) and heavily doped (N, = 10" cm™) n-type Si.

(30)
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In our calculations for 6H-SiC, the effective masses m, =0.42m, and

m,, =1.0m,, the longitudinal sound velocity u, =12.6x10° cm/s, and the

deformation potential constants E,, = E;, =lOeV were taken according to ['°].
In this work, the value of 10 eV was established as a value providing the best fit

of calculated mobilities and their anisotropy ratios to the measured ones of both

6H-SiC and 4H-SiC.

Figure 3 compares the temperature dependence of the experimental and

calculated Seebeck coefficients for the n-type 6H-SiC with n, =10" cm™.

The measured and calculated Seebeck coefficients for the n-type 6H-SiC

agree well at higher temperatures 7' > 600 K, but at lower temperatures, where

the phonon drag component is dominating, our theoretical model with

E,,=E,, =lOeV strongly overestimates the phonon-drag-induced Seebeck

effect. A somewhat better fit in the range 7 <3OO K was obtained by using the

reduced deformation potential coefficients E,, = E,, =5eV, but presumably the

real reason of the above discrepancy is hidden in the incompleteness of the low

energy phonon-phonon scattering model resulting in the factor A(f_o specified

by Eq. (26).

Fig. 2. Dependence on the temperature of the total Peltier coefficient for mixed electron and hole
conductivity for low-doped n-Si and p-Si: calculated results (--- order O, — order 1) are compared
to Geballe and Hull ['°] measurements for donor concentration 2.8 x 10'*cm™ and acceptor
concentration 8.1 x 10" em™.
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RANI JA RANIKARBIIDI LAENGUKANDJATE
MITTEISOTERMILISE TRANSPORDI MODELLEERIMINE

Enn VELMRE ja Andres UDAL

Samade autorite varem avaldatud isotermilise transpordimudeli iildistamise

tulemusel on esitatud pooljuhi termoelektriliste nédhtuste teoreetiline mudel ja
vastavate koefitsientide arvutusprotseduur. Seebecki ja Peltier’ tegurite model-

leerimisel madalamate temperatuuride piirkonnas on olulise mdjurina arvesse

voetud elektronide foononkanne. Esitatud mudel voimaldab arvestada ka

elektron—aukhajumise moju termoelektrilistele néhtustele. On näidatud, et

enamikus pooljuhtseadiste simulaatorites rakendatud transpordimudelites on

mitteisotermilise, s.t. temperatuurigradiendiga vordelise voolukomponendi osa

tugevasti alla hinnatud.
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