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Abstract. In this paper, possibilities for deviation extension of the phase locked loop (PLL)
frequency demodulators are considered and some specific features of the PLL systems are

analysed. First, optimization of the 3rd order PLL is used in order to reduce substantially the

dynamic phase error; that enables the extension of the deviation range. Both theoretical analysis
and computer simulation are used to determine the reliable operation limits of the frequency
deviation. Second, implementation of the first order PLL as a wideband frequency demodulator is

analysed, assuming an effective out-loop postprocessing (filtering) of the output signal. It is shown

that the deviation range may be extended almost to the maximum theoretical value, determined by
the sampling theorem. Finally, two special periodic signal waveforms, generated in the first order

PLL due to the in-loop noise (ripple), are demonstrated and analysed.

Key words: phase locked loop, frequency demodulator, frequency deviation, dynamic phase error,

filter optimization,computer simulation, signal distortion.

1. INTRODUCTION

Demodulation of frequency modulated (FM) signals is one of the most

important implementations of the PLL. Deviation extension makes it possible to

improve the signal-to-noise ratio and to lower the demodulation threshold.

At the 70 MHz intermediate frequency, extension of the deviation range up to

18 MHz and even more is desirable for the 10 MHz signal bandwidth (BW).
However, problems arise when applying the conventional PLL frequency

demodulators (FDEM) in case of FM signals with extended deviation, because

the dynamic phase error (DPE) in the PLL exceeds the critical level. Therefore

the output signal is heavily distorted and the PLL can even drop out of lock. The

other restriction is the limited frequency control range of the voltage-controlled
oscillator (VCO).
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Classical structure of a PLL FDEM is shown in Fig. 1 ['7]. It consists of a

phase detector (PD), a low-pass filter (LPF), and a VCO, forming a feedback

control system. The input signal is characterized by the phase O. and the

frequency f, of the carrier, the corresponding parameters of the VCO are

denoted as @, and f,. The closed loop transfer function of the linear structure

can be expressed as

Va 1)
,

— KyF(5)
AA

where V_, is the output voltage, Af, is the input frequency deviation, and F(s)

is the transfer function of the LPF. The gains of the PD and VCO are denoted as

K, [V/rad] and K [rad/(s V)], respectively. Often the open loop transfer

coefficient (velocity gain) K, =KK [rad/s] is used. That corresponds to the

hold range of the PLL without the LPF, which means that F(s)=l.

For the stepwise frequency deviation Af; =Aw, /27, the steady state phase

error ®@, =@, — O, can be expressed as

A F.
©, (t — o) =arcsin 275—i

,

KdKo

while the steady state output voltage is

Af;

KVout

According to (2), the largest static frequency deviation, max Af, <K, /27,
corresponds to the phase error @, =9o°. The actual deviation value must be

several times smaller, because the DPE can considerably exceed the static value.

The output voltage in Eq. (3) is reciprocal to K_. Thus, the nonlinear

distortion of the output signal is directly related to the nonlinearity of the VCO’s

transfer characteristic within the signal BW.

Fig. 1. Classical PLL FDEM.

(1)

(2)

(3)
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The transfer function of the multiplying PD has a sine form nonlinearity, and

the output voltage V, of the PD is unavoidably accompanied by the double input

frequency ripple. Assuming that the ripple is totally suppressed by the LPF, the

output voltage of the PD is expressed as

Va = AAGa sinb,,

where A, is the input voltage amplitude, A, is the VCO’s voltage amplitude,

and G, lis the electronic gain of the PD. Altogether they form the gain

K, =A,A G, [V/rad] of the PD.

However, in some cases LPF may disturb the demodulation process and retard

dynamics ofthe PLL.

The LPF in the 3rd order PLL is usually a 2nd order RC filter [*7] with the

transfer function

@ @ ,(s+ O

F(sy=21I—
, (5+ O S + 052)

where @, =27f,, @y,=27f,, and 0,=27f, correspond to the

characteristic frequencies of the LPF. The Bode plots of the F(s) and the open

loop transfer function H(s)=K,F(s)/s of the PLL linear model are shown in

Fig. 2. The structure of the LPF is also shown.

Typically, R,>>R, and C,<<C, are

chosen, and thus, f,<<f,<<f,. For

example, the classical demodulator based on

the IC NESS6B [Ky = 0.127 V/rad,

K, = 4.2 x 10’ rad/(s V), f,=K, /2=
84.9 MHz] has the following recommended

values of the LPF components [°]: R, = 200 Q

(internal resistance), R, = 27 Q, C, = 56 pF,

C,=s6opF. Hence, f,= 116MHz,

f, =IO.SMHz, and f,, =129 MHz.

In order to minimize the noise BW, f, is

often selected equal to the zero crossing
frequency of the |H,(jw)! plot []
Unfortunately, in this case the DPE

significantly exceeds the static error and a drop
out of lock may easily occur.

Fig. 2. The 2nd order LPF and Bode

plotsof | F(jw)| and | H (jo)].

(4)

(5)
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2. PARAMETRIC OPTIMIZATION OF THE LPF

For the 3rd order PLL, analytical formulae to determine the dynamic
parameters are rather complicated or lacking. Due to the sufficient difference of

the frequencies f, and f,, the latter can be taken as infinity (C, =0), and a

second order PLL results. Then the maximum DPE, corresponding to the case of

sine wave modulation with the frequency of the PLL’s natural frequency

fn=+K,Co(R,+R,) /27, can be expressed as

Omax
E A /25 %)

where ¢=f,/(2f,) is the damping factor of the H(jw) for C,=o. The

approximate expressions for the lock-in range is

Maz2bf=l2l7,.
and the pull-in time

T» =(Af;)* Mare f°)

can also be used for estimating the respective parameters of the 3rd order PLL

FDEM [’].
One possible way for reduction of the DPE is shifting the zero-crossing

frequency (Fig. 2) approximately into the middle of f, and f, ["]. According to

the analysis of Eq. (1) and computer simulations, the value of R, is the most

appropriate parameter for the LPF for this tuning (Fig. 2). Simulation of H(jw)

for a number of values of R, clearly demonstrates that due to the change of R,

from 27 to 87 Q, the phase margin significantly increases [°]. It has a direct

impact on the dynamic properties of the closed loop system and leads to a rapid
decrease of the DPE.

As an illustration, let us consider again the particular case of the PLL FDEM

discussed above. For the recommended (original) value of R, = 27 €, the

maximum value of the DPE at the frequency step of Af, = 18 MHz is

approximately 1.1 rad. Increasing R, to 67 € reduces this value by 1.4 times.

Even more critical is the situation in case of sine wave modulation. For example,

having the modulating frequency f,, = 10 MHz and the maximum deviation

max Af; = 18 MHz, the DPE equals to &,
.

=lßrad at R,=27Q.

Increasing the value of R, to 67 £, DPE reduces to 0.95 rad [*]. Hence, an

easily achieved reduction of the DPE about two times lowers its level safely
below the critical one.

Further increase of R, is less effective, because some negative effects appear

simultaneously. Due to the reduction of suppression of the second harmonic

(6)

(7)

(8)
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component of the carrier, the ripple of the VCO’s input signal increases

(especially at the minimum ripple frequency, which is 2(70-18) = 104 MHz in

our case), and also an increase of the noise BW can be noticed.

According to simulations, the first effect is almost negligible and it can be

simply compensated using an additional output filter outside the loop. For the

noise BW estimations, the following approximate formula is often used for the

second order PLL (C, =0) [*]:

B = [(H(jo) Y do=rf,(E+l/$).
0

In general, however, this simple expression is not directly suitable for the 3rd

order PLL. A more complicated but exact formula for the noise BW of the third

order PLL is presented in []:

B, =

7f,4+h+l/vp4))
X

2(1+1/(h,u)—(1—1/;1+1/(h,uz))/v)

where /I=fz/fpl , v=fp2/fz ,
and h=(fnfpl)/fz2 (Fig. 2).

Increase of the noise BW due to the increase of R, from 27 to 67 Q is

relatively small, approximately 23%. However, further increase of R, causes an

accelerating increase of the noise BW. Thus, the reasonable value of R, is

approximately between 60 and 70 Q.

The values of the lock-in range Af; and pull-in time 7, have been also

estimated using Eqs. (7) and (8), respectively. The initial values at R, = 27 Q

are Af, = 10 MHz and 7, = 43 ns, while at R, = 67 Q these values change to

Af, =2l MHz and T, = 26 ns. Improvement of these important dynamic

parameters is obvious.

3. IMPACT OF THE PD NONLINEARITY

For the investigation of various nonlinear effects in the PLL FDEM, an

original computer simulation program has been developed. Particularly, the

nonlinear behavior of the PD is taken into account. Next, some results of

simulation of the particular PLL FDEM, discussed above, are presented.
A response to the frequency step Af, = 18 MHz is shown in Fig. 3 in case of

different values of R, (without taking into account the ripple at the PD output).
Simulated closed loop signals at the input sine wave modulation are shown in

Fig.4a (R,=27Q) and 4b (R,= 67Q), where Af,=f;(t)—fy(t)=

Af, (1) -KV, (t) 1s the instantaneous value of the virtual frequency difference.

(10)

9)
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In the case (a) the signal is irregular, because the demodulator drops out of lock.

In the case (b) the behaviour of the system is regular. Thus, the desired level of

the DPE is obtained to get safe operation of the PLL FDEM.

Fig. 3. Step response (Af;, =lB MHz) at R, = 27 to 87 Q (step 20 Q)

Fig. 4. Simulated waveforms of the ©,, V,,, and Af, at sine wave modulation of the input

signal (f,, =lO MHz, max Af; =lB MHz): (a) R, =27 Q, (b) R, =67 Q.
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Comparing the results with linear analysis (Section 2), a difference between

the DPE peak values can be noticed, which is caused by the sinusoidal character

of the PD. To guarantee the same level of the control voltage at the VCO input as

in the linearcase, a greater phase difference appears between the PD inputs.

4. FREQUENCY DEVIATION LIMITS

The maximum deviation range of the PLL FDEM, max Af,, is limited by
several factors. First, according to the Shannon’s sampling theorem

fm,max<(fc—maXAfi)/2’

where fmmax is the maximum modulation frequency and f_ is the center

(carrier) frequency. Thus,

maxA fi <(f. - 2fmmax)»

which can be a serious restriction for broadband signals.
The other limit is related to demodulated signal filtering. For an ideal LPF

Fmmax <2(f. - maxA f).

In case of the real finite order LPF

Fomx S2(f, —maxAfi)/kr

where the coefficient k; >1 depends on the type and order of the used LPF.

Therefore,

maxAfiS f. - kt fmax /2.

In practical cases k; >4 and, therefore, the second restriction can be more

severe as the first one. Thus, in general

maxAf < mm{ffi ,
As noted above, the soft restriction, max Af; < f,, is valid only for the static

system while a much stronger one, max Af; << f,, must be fulfilled in a real

PLL because of increased DPE.

S.PLL FDEM WITHOUT IN-LOOP LPF

The maximum overshoot of the DPE, which significantly reduces the input
frequency deviation range, rapidly increases with the order of the PLL. Let us

consider now a particular case of the first order PLL FDEM without the in-loop

(11)

(12)

(13)

(14)

(15)

(16)
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LPF, instead of which an external postprocessing filter is used. The

corresponding PLL has a flat frequency response without overshoot, with the cut-

off frequency f, which is equal to f, (Fig.2 The broad BW of this PLL

maintains good suppression of the internal noise and disturbance ['*'"]. Fitting
the modulating signal spectrum and BW yields

mafoi va, fv =fh =fm,max’

and using condition (13), expression (16) can be rewritten as

maxA f; < min{ F 3fc/(l+kf/2)

In order to achieve the maximum deviation range in the first order PLL

FDEM, a VCO or current controlled oscillator (CCO) with a wide linear range is

necessary, first of all because of a large double frequency ripple in the case of

sine wave input signals of the PD (Section 6). However, using current-mode

steering of the rectangular wave relaxation oscillator, the required linear range

can be obtained in commercially available discrete time integrated circuit PLLs.

Moreover, input signals of the PD often pass limiters to suppress parasitic AM,
and can be then considered as rectangular pulses, producing relatively smaller

ripple.
Thus, the rectangular logic format signals with the period 7 and magnitudes

V. and V_, respectively, are considered below in a particular first order PLL

FDEM analysis (Fig. 5). The phase difference of the PD input signals (phase error)
is characterized by the timing error and 7., which can be expressed as

>
8T

°

27

Fig. 5. Waveforms of the PD voltages V,, V_,
and V,, and the voltage V. across the VCO

timing capacitance.

(17)

(18)

(19)
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Using the XOR logic gate as the PD, the regular range of ¢, is

T T
-—<t <—.

4 4

The output voltage of the PD is a sequenceof rectangular pulses:

Vi if nzšt<(2n+l)š+tc,
Va= :

T T
0, if (2n+l)z+tešt<(n+l)s, n=0,1,2,...,

having average value

T/2 V tv„„=3 [ Vydt=—22 422V,
Y T 4 2 T

Thus, at zero phase error (t, =0) we obtain V
, =V, /2, and transfer gain of

the PD is

AVaav V
Kjas

A, V 4

Often the VCO contains a CCO having a linear gain and a wide frequency range

[7], and a voltage-to-current converter having the transconductance Gm:
Letus consider implementation of the rectangular wave VCO by a

transconductance circuit and a symmetrical emitter-coupled (source-coupled)
multivibrator, which is widely used as a CCO at high operating freguencies. The

charge process of the timing capacitor is explained using the structure shown in

Fig. 6 where the control current 7. is mirrored through two identical sources. The

voltage drop V. across the timing capacitor C is caused by one of the two sources,

while the other one directly biases the switching transistor. The followingcondition

must be valid for triggering:

1 T/2

V. G jlcdt=vth,
0

where V, is the threshold voltage of the CCO.

Fig. 6. Charging of the timing capacitor of CCO.

(20)

(21)

(22)

(23)

(24)



129

Considering the classical PLL. FDEM structure where the PD average signal

V4. 18 available, and replacing /7 in (24) by V,,, G, ,
we obtain

1
=—=V, K.,fo

T d,av**o

Km
2CV,,

For the PLL FDEM without internal LPF one can utilize the timingcapacitor C

in the CCO for averaging the PD output signal. Replacing /_ in (24) by V,G,,,

yields

T Va C 1
t=—+t, =—"—=—

4 Vo€) VK

According to Eq. (26), the value of ¢, (pulse width of the PD output signal) is

determined by the internal parameters of the demodulator and it does not depend on

the input signal deviation. The value of 7, can be changed by selecting the control

current (which determines the value of G ), the capacitance of the timing capacitor

C, orthe valuesof V,, and V.

The timing error 7, is directly influenced by changes in the input signal period.

The slope of V. is:

%_ Vdm Gm
d? C

The pulse width ¢, of the PD output signal determines the minimal (semi)period
of the CCO and the maximal deviation range of the input frequency, while the

minimal operating frequency can be selected rather small.

The free-running frequency f, = f, of the CCO is expressed at 7, =0 as

fc —

Vdm Gm

4CV,

while the average output voltage of the first order PLL FDEM is V,, = f; /K ,
the same as in the general case.

6. WAVEFORM CONVERSION IN A CLASSICAL PLL

The ripple component in the PD output signal was above referred to as a

disturbing factor. Now, let us analyse the nature and influence of the ripple,
keeping in view the classical first order PLL with sine wave excitation (Fig. 1)

',

(25)

(26)

(27)

(28)
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k=l k=l

(33)
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In case of a harmonic input signal V, =A, sin(@;t) without deviation

(w, =w,), and taking A, = A =1 [Eq. (4)], the closed loop first order PLL can

be described with the next system of equations:

V)=V, (t)sin(@,t),

V, (1) =cos [[@, + K, V,()]dt.

The system (29) has no analytical solution and can be solved with respect of

V,(t) and V, (2) only numerically. In order to understand the forming process of

the signals and to determine their harmonic composition, it is appropriate to

consider this process step by step.
Let us assume for the first step of iteration that the output signal of the PD has

only the double-frequency component: V,(t)=sin (2ait), which serves as the

control signal for the VCO. Then, the output signal of the VCO is expressed as:

V, (1) = cos[@,t — G cos (2w,t)/ 2]

=cos(@.t)cos[Gcos(2w,t)/ 2]+ sin (@ t)sin[G cos (2a,t)/ 2],

where G=K, K/o, =K, w, isthe normalized gain of the loop.
We can transform Eq. (30) as:

V, (1) = cos(a,t) [J„ (Gl2)+2>(-l)I (G/2)cos(4k(oct):|
k=l

+sin (a)ct)Zž{(-1)"+l Jox_l(Gl2)cos[2(2k —l)a,t] }
k=l

where J, is the Bessel function with the index k (k=1,2,...).

The result of the first iteration of (31) can be written as

V(1) = ža;k„, cos [(2k - I]+ ia;k_lsin [(2k —D],
k=l k=l

where a, = f[J,,(G/2), J,,,(G/2)] and a, = f[J,(G/2), J,,,(G/2)],
(n=1,2,...,2k -1).

Thus, the double frequency component at the VCO input will induce a

complex signal at its output, in which the fundamental component accompanies
the infinite sum of higher odd harmonics.

Multiplying now, for the next iteration, Vo’ in PD by the input signal V; (),
we obtain the PD output signal, consisting only of the even harmonics:

(29)

(30)

(31)

(32)
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where the coefficients b, andb, (n=1,2,...,2k) are also determined by the

factor G.

It can be shown that further iterations will specify the values of the

coefficients a and b, but will not change the structure of expressions (32) and

(33). Consequently, we can express the VCO and PD output signals as Fourier

series:

V.(l)=YA, sin[k —Dat +¥,, ],
k=l

V,(t)=Y 8,, sin(2kw.t +0,,),
k=l

where A, = fA(G) and ¥, = fP(G), (n=1,3,..., 2k —1), denote the magnitude
and initial phase of the nth component of the series, respectively, while

B, = fß(Ay>¥ p 15 Anits ¥1) and 0, =FO(A,I,¥ ity
Aprts ¥t )s

(n=2,4,6,..., 2k).
In general, the input signal frequency can have a deviation A®, in respect to

the central frequency. In this case, each amplitude A, and initial phase ¥, of the

harmonics are functions of two variables, G and y, where y=A®, /K, lis the

initial relative frequency deviation.

In order to solve the system (29) numerically, a special PLL simulation

program was developed. The dependence of the magnitudes of odd harmonics

(up to the 15th) of the VCO output signal V, on G is shown in Fig. 7 at

Aw, =O, where a, =A,/A, denotes the relative magnitude of the kth

component. According to simulations, the waveforms of the V_ are close to

sinusoidal in case of G <<l, and significantly distorted for greater values of G

(Fig. 8).
The product of multiplying the input signal to the fundamental component of

the VCO output is the only non-zero (averaged) component in the PD output

voltage. Thus the value of A, is most important, because the PD gain K; and the

loop gain K, (Section 1) are proportional to it. Consequently, the validity range

of the PLL depends on A 4,, too.

In Fig. 9, variation of the relative magnitude &, =A, /A, of the VCO output
as a function of G and ¥ is shown in case of the input frequency deviation.

Discontinuity of the curves at y=y,. determines the limit of the

synchronization capability (capture range) of the loop.

(34)

(35)
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Fig. 7. The magnitudes of the odd harmonics at Aw; =0 (k=l, 3,
...,

15).

Fig. 8. Output signal of the VCO for different values of the parameter G.

Fig. 9. Normalized magnitude of the main harmonic vs relative deviation y at various values of

the parameter G.
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7. CONCLUSIONS

It has been demonstrated that the dynamic phase error of the PLL frequency
demodulators can be substantially reduced by optimal selection of the

demodulator parameters (particularly, by the low-pass filter tuning), while

increase of the noise bandwidth and the ripple at the voltage-controlled oscillator

input is not noticeable. As the result, a significant extension of the deviation

range for the input signal is obtained.

For example, a reduction of the dynamic phase error up to two times has been

achieved in case of a typical monolithic PLL demodulator circuit, while the

increase of the noise bandwidth less than 25% has been observed at the 70 MHz

centre frequency, 18 MHz deviation range, and 10 MHz signal bandwidth.

Theoretical and simulation results have been supported by experiments.
A possibility to use the first order PLL as a frequency demodulator has been

analysed. It has been demonstrated that in a PLL without in-loop low-pass filter,
the role of the averaging circuit for the phase detector output signal can play the

timing capacitor of the current controlled oscillator. Such PLL frequency
demodulator may have outstanding linearity and wide bandwidth without

dynamic phase error overshoot, which enables an extremely wide frequency
deviation of the input signal.

Additionally the impact of the ripple as an unavoidable component of the

volatage-controlled oscillator control has been investigated. It has been

demonstrated that the ripple can induce a quite large distortion of the oscillator

output waveform, primarily generated as sinusoidal. The harmonic composition
of the output signals of the phase detector and oscillator was shown to depend on

the relative open loop gain and the input frequency deviation.

From the mathematical point of view, the PLL system generates two specific
periodic signals, one of which consists of the odd harmonic components, and the

other one of even components.
As a result, a way for improving the performance of the PLL frequency

demodulators has been achieved in comparison with the classical solutions, while

the described theoretical considerations serve for better understanding of

complex dynamic processes taking place in the nonlinearPLL systems.
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DEVIATSIOONI LAIENDAMISE PROBLEEMID JA
MITTELINEAARSED EFEKTID FAASILUKKSUSTEEMI

SAGEDUSDEMODULAATORITES

Mart MIN, Vello MANNAMA ja Toivo PAAVLE

On vaadeldud faasilukksiisteemile (FLS) tuginevate sagedusdemodulaatorite
(SDEM) deviatsiooni laiendamise voimalusi, samuti tildisi protsesse esimest

jarku FLS-s. Kolmandat jarku FLS SDEM-i korral voimaldab filtri parameetrite
traditsioonilise kombinatsiooni asendamine esitatud optimaalse valikuga tundu-

valt vihendada diinaamilist faasiviga ja seetottu oluliselt laiendada sisendsignaali
sagedusdeviatsiooni.

Teise kiisimusena on kisitletud esimest jarku FLS SDEM-i rakendatavust

deviatsioonipiiride avardamiseks, kusjuures eeldatakse, et puuduva siisteemi-

sisese madalpdisfiltri funktsioon on antud erilisele viljundfiltrile. Selline lahen-

dus voimaldaks deviatsiooni suurendada teoreetilise maksimumi ldhedale.

Lopuks on selgitatud korrutava faasidetektori viljundis viltimatult esineva

hédiresignaali moju ahelasisestele protsessidele ning demonstreeritud kahe eri-

kujulise perioodilise signaali (funktsiooni) genereerimise voimalust esimest jarku
FLS-i abil. Teoreetilisele analiiiisile on lisatud spetsiaalse, FLS-de analiiiisiks

loodud arvutisimulaatori abil saadud tulemused.
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