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Abstract. General optimization theory of multistage systems is applied to optimally controlled

cascades composed of Curzon-Ahlborn-Novikov engines or heat pumps. The optimal cascades are

those which work in the engine mode (process approaches equilibrium) and maximize the work

production, or those which work in the heat-pump mode (process departures from equilibrium) and
minimize the work consumption. A unified mathematical description is proposed which deals with

multistage Curzon—-Ahlborn-Novikov processes and with the limiting continuous processes. A

kinetic extension of the Carnot theory shows deviations of the stage efficiency from the Carnot

formula, caused by the process irreversibility. A relatively unknown discrete theory, with a

Hamiltonian function constant along the optimal path, is used for the purpose of work optimization
in both discrete and continuous cases. Nonlinear difference equations which follow from the energy
balance and kinetics of heat transfer are constraints in the work optimization. The optimal discrete

set is canonical and preserves most of the properties of the classical Pontryagin algorithm for

continuous optimization. Generalized exergy (available energy) is obtained from the discrete

functionals of work for both discrete and continuous cases. This exergy refers to finite time or finite

size systems and simplifies to the classical exergy in the case of infinite duration. The important
issue is that the bounds provided by this generalized exergy are stronger than classical thermostatic

bounds and hence they are closer to reality.
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1. INTRODUCTION

It has been recognized recently that approaches which use discrete formalisms

of non-equilibrium thermodynamics are capable of providing quite realistic

performance criteria and bounds for real processes occurring in finite time and for

practical systems of finite size. Especially finite-time thermodynamics and
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thermoeconomics, both related in spirit to an older field called second law

analysis, have been developed to aid in the search for the optimum ways to operate
machines and processes, either by finding best or optimum values of key
parameters or by determining optimum pathways of operation associated with

various thermal engines and operations of units in thermal and chemical plants.
One of the reasons for the attractiveness of these newer branches of thermo-

dynamics over older ones is that they admit explicitly that for given process

requirements, operations must occur with finite intensities, and that inherent loss

mechanisms need to be taken into account.

Thanks to the synthesizing nature of these approaches, as well as to their

effectiveness, significant progress has been achieved in the design of new or

improved thermal, separation, chemical and radiative systems. With the help of

thermodynamic approaches, a variety of practical and industrial systems can now

be modelled and optimized, including thermal and solar-driven engines, heat

exchangers, diffusional separators, semiconductor devices, etc. These applications,
on the one hand, result in a deeper understanding of the theory and, on the other,
lead to further improvements in the design of practical devices. The unifying factor

for these subjects follows from the way how most of them deal with thermo-

dynamic systems which have some control that can be adjusted to achieve the best

or extremal performance. Thus, in essence, these approaches focus primarily on the

optimization of energy conversion and transmission systems using thermodynamic
methods. Having developed formulations for evaluating system performance,
design variables and costs, researchers can now address various problems of

system control and optimization. Dynamic bounds can be determined which are

usually functions of operational constraints consistent with finite rates of operation
for the process. These bounds can be contrasted with the static bounds of classical

thermodynamics pertinent to infinitely slow processes.
For optimization purposes, system models are being developed which

contain, in general, control (decision) variables, state variables, and (usually)
some uncontrolled or fixed parameters. These models incorporate diverse

process characteristics such as finite heat conductance, semiconductor bandgap,
diffusion and beam transferchannels, friction, heat loss, chemical resistance, and

other factors which are essential in real energy conversion and transmission

processes. Approaches from classical and finite-time thermodynamics and

exergy analysis search for the best or optimum values of the principal parameters
of various engines (thermal, solar, combustion, etc.) and unit operations or

processes (distillation, chemical reactions, etc.) as well as of some combined

structures operating in thermal or chemical plants under specified operational
constraints. Optimization usually yields a few basic recommendations on how to

run a practical system. Optimal paths and optimal controls (for instance, driving
heat fluxes maximizing work produced) are determined. The role of

mathematical programming and optimal control theory is essential when solving
these problems.
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2. BASIC FEATURES OF THE MATHEMATICAL MODEL

In a series of our recent papers [' ] we have developed a general optimal
control framework for a difficult class of problems of work maximization in

multistage endoreversible processes [*°] which yield mechanical work with

finite rates and may be characterized by multiple (vectorial) efficiencies.

Methods originally designed to processes with pure heat transfer ['~°] have then

been extended to those with simultaneous heat and mass transfer [°]. The main

purpose of the extension was to develop an analysis which would be a suitable

starting point to investigate non-isothermal chemical engines. To date the only
acknowledged theory is that dealing with isothermal chemical engines ["*].

Equations of dynamics which follow from energy and matter balances and

transfer equations are difference constraints for optimized work. Irreversibilities

caused by the energy and mass transport are essential. Variation of efficiencies

takes place due to finite heat and mass fluxes as natural control variables. With

our modelling, enhanced bounds for the work released from an engine system or

added to a heat-pump system can be evaluated. Lagrangians and Hamiltonians of

work functionals and discrete canonical equations are effective; they reach their

continuous counterparts in the limit of an infinite number of stages. Bellman’s

dynamic programming is an efficient method either to construct his recurrence

equation or to arrive at a discrete maximum principle of the Pontryagin type, in

which a Hamiltonian is maximized with respect to controls [’]. Both these

algorithms are powerful computational tools which serve to maximize power

output and evaluate optimal controls. For a finite-time passage of a resource

fluid between two given thermodynamic states, an optimal process is shown to

be irreversible. Its optimal intensity is characterized well by the Hamiltonian of

the optimization problem. Characteristic functions which describe extremal work

are four;d numerically in terms of final states, process duration, and number of

stages ["].
An extension of the classical exergy and its underlying work potential / to

thermal and separation systems with a finite number of stages and a finite holdup
time of the resource fluid is one of the main results of such analyses ['*]. This

extended exergy simplifies to the classical thermal exergy in the limit of infinite

duration and an infinite number of stages. The extended exergy exhibits a

hysteretic property as a decrease of maximum work received from a multistage
engine system and an increase of minimum work added to a heat-pump system,
two properties which are particularly important in high-rate regimes. Our

purpose here is, in particular, to apply the extended exergy and its underlying
work potential to irreversible finite-period cycles in thermodynamic spaces.

The theory of infinite sequence of infinitesimal Curzon—Ahlborn-Novikov

(CAN) processes has been applied ['™] to describe the active (work producing)
exchange of heat between two fluids, in particular fluid and bath, thus leading to

the dissipative extension of the corresponding reversible problem. Both in the
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irreversible problem and in its reversible prototype, a maximum of work from a

finite resource is sought. In the case of the reversible process, the maximum

work is the well-known exergy or available energy of the resource. In this work

we show that the CAN sequence is the basic theoretical tool to define a duration-

dependent work potential and related available energy (exergy) which

generalizes the classical exergy for finite time processes with dissipation
occurring in associated resistances. Earlier generalizations ['°] have missed

related functional statements and associated time evolution, and have not made

distinction between the processes approaching and leaving the equilibrium. This

distinction has been emphasized only recently, and the analysis has explained
that the distinction becomes unnecessary only for the reversible quasistatic
process, when the effect of resistances vanishes and the nonideal exergy

simplifies to the classical reversible exergy, the latter being known from many

textbooks. The classical thermal exergy can also be obtained in a less standard

way, as the limiting work received from the sequence of a finite number of

Carnot cycles at the limit when the number of these cycles tends to infinity. For

the purpose of the standard exergy, the commencement of the theoretical scheme

with a finite-stage model is unnecessary, though; the traditional model of

infinitesimal stages is sufficient. Indeed, the presence of reversible cycles fixes

automatically the first-law efficiency 1 of each infinitesimal stage at the Carnot

level

n=l-T¢/T,

where T lis the instantaneous temperature of the resource, and 7° is the

temperature of the environment or an infinite bath. Since the unit mass of

resource releases the heat

dQ =—cdT,

where ¢ lis the specific heat, the classical thermal exergy E, follows by

integration of the product

—endT =—c(l-T*/T)dT

between the limits 7 and 7°. The integration yields the well-known classical

expression for the thermal exergy in quite simple way.

However, the approach to the exergy using sequential cycles becomes nontrivial

in the irreversible (finite rate) situation, since in this case the instantaneous

efficiencies 1 of the system differ from those of Carnot at each instant, and their

prior evaluation is necessary before the maximizing and integration of a related

work integral can be made. Moreover, these efficiencies have to be evaluated in a

proper form, as certain functions of the process state 7 and the corresponding rate

dT/dt, to assure the genuine functional property (path dependence) for the work
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integral. In the case of more state variables (for example 7, X) vectorial

generalizations of the theory are to be taken into account [°]. The work integration
must be preceded by an optimization procedure which maximizes the work integral
and assures the choice of an optimal path.

Following our previous works ['], we now outline the derivation of the

power flux and a related work functional for a steady process of work production
in a sequence of infinitesimal CAN engines. We introduce the differential of the

overall conductance y associated with the overall transfercoefficient o’

—_— ‘a, Fdx,=o'a,
dYZ

=OL'dA- le*'dedy_le
where A is total area of heat transfer, F lis cross-sectional area of the fluid

flow, and a, is specific area of heat exchange.

We also introduce a spatial scale for the overall transfer process. It is

identical with the height of the heat transfer unit H

TGC“:HTU =_QC—V =XV.
oa,F oa,

Since unit of the mass flux G is mass per unit time and that of the volumetric

heat transfercoefficient o'z, is J/(m’Ks), the unit of the quantity H,, is length.
In the above equation, H,, is referred to the driving fluid (fluid 1). This

equation also contains the quantity x = pc/oa,, the ratio of the volumetric

capacity pc to o’a, . Its unit is time, and it plays the role of a time constant for

the driving fluid flow. The quantity x remains a finite constant at the limit of

vanishing velocities v since the transfer coefficients approach in this limiting
case certain nonvanishing constant values governed by the fluid conductivity in

absence of the convection. In the case of finite o’, the quasistatic limit can be

attained by pushing the resource fluid infinitely slowly through the system.
The process evolution is traced in terms of a nondimensional quantity T,

Eq. (3), related to ¢ or x, which is defined as the ratio x/H;.
It represents a

nondimensional length which is known as the number of transfer units. It is the

length x scaled in units of the H,,. Since T is a measure of both the extent of

the system and of the fluid’s contact time with the energy exchange area, it plays
also the role of nondimensional time, and this is why it is designated by T. The

variable T can be defined by several expressions

T e o1 i
Hry pev XV X

(3)

(1)

(2)
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the latter being restricted to the case of constant velocity v. Then it can be

shown ['] that the heat balance for the driving fluid yields

dQ, GedT dT dT dT
— = —U :———,—z—xv ——:-—-x——:——,
dy o 'dA dx dt dt

and the power differential in terms of the driving heat differential dQ, is

aw=ll-— —lao, =-Gel 1-—|ar.
T-dO, /AY T+u

Consequently, the corresponding power integral per unit mass flow or the

specific work of the fluid at flow W is

w
% o

T®
Ws—:—der=—J'c R Bl

G
; ;

T+u
T T

Here u is the rate of the change of the temperature. This equation defines the

process Lagrangian L or the integrand of the work functional for the case of

pure heat transfer. A formula of this kind can also be found for an unsteady
counterpart of the process with the active heat exchange between a body and the

thermal reservoir.

When simultaneous transfer of heat and mass occurs, the form of L is much

more involved. In this case, L depends not only on the rates of temperature
change but also on the rates of change of all independent concentrations. For an

active evaporation process the derivatives u =dT/dt and v =dX/dt can be

accepted as controls [°]. These controls are related to fluxes of heat and mole

numbers, g and n, by the expressions g =—gcu and n=—gv.

The negative ratio of the one-stage power w to the mass conductance g

defines the Lagrangian L of the problem in terms of the controls # and v. In the

present case it is more suitable to use L that has units of energy per mole. One

may also use the quantity f, =—L which is the power output per unit molar

conductance g= GO; then .

dW/dt =w/g=w/[(GO)=f, =—L.

To obtain the work produced per unit mole of the fluid, we integrate over 1

the function f, =—L expressed in terms of controls and state. For simultaneous

transfer of heat and mass satisfying the Lewis analogy we obtain

4)

(5)

(6)

(7)
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This equation allows us to find a maximum for the cumulative mechanical work

W when a finite-resource fluid changes its thermodynamic parameters in a finite

time between two assumed states. It may be shown that this power formula

reduces exactly to that ofpure heat transfer when n=o. The methodology of the

optimization approach is preserved even for more complicated Lagrangians.
It may be shown that the basic functional for the process with pure heat

transfer, Eq. (6), can be written in a general form which explicitly contains the

entropy production S, i.e.

T/
e

W=-[ c[l—T)dT—TeSG =W -T°ss,
Ti

where W™ is the work in the reversible process.

An analogous form holds for the mass transfer functional derived from the

Lagrangian (8). The first or classical term of the work integral has the potential
or path-independent property. Consequently, this term does not have any
influence on the family of extremal trajectories obtained as solutions of

corresponding Euler-Lagrange equations. It is the entropy production which

causes the (second) non-potential component of the work integral. The

equivalence of the work and the entropy production extremizations, stemming
from Eq. (9), is shown here for the realm of functionals rather than functions,

(8)

9)
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thus representing the second law formulation of Guy and Stodola [*°] in infinite-

dimensional spaces.
Whenever a quasistatic limit is achieved for the process of pure heat transfer,

in which case the rates 7 vanish, the work functional leads to the classical

thermal exergy

TE

E,= —lc[l—%e]dT= c(T-T°)-cT° ln-TT—;-.
For a quasistatic process with simultaneous heat and mass transfer, a

generalization of the limiting formula (10) involves the concentration of the

active component, X. Again, in the quasistatic case the classical exergy follows.

3. FINITE-TIME BOUNDS DIFFERENT FOR WORK OF CREATION

AND WORK OF DESTRUCTION

A spectrum of optimization methods can be used to solve the problem of

extremum work. They include maximum principles [''"°] which apply a

Hamiltonian, and canonical equations or dynamic programming algorithms
which make use of Bellman’s recurrence equation ['*'7]. The connection

between these methods is now well understood ['*'*]. The results of the optimal
work should be presented in the form of a generalized potential function which

depends on the end states and duration. For the purpose of direct evaluation of

the optimal work potential either the so-called Hamilton—Jacobi—-Bellman

equation, known from the optimal control theory, or the related Hamilton—Jacobi

equation, known from the variational methods of classical mechanics, has to be

found and then solved [*'°]. But, especially in the case of vectorial efficiencies,
when the analytical solutions are difficult to find, discrete counterparts of these

fundamental equations are necessary to find the optimal solutions by numerical

methods. An approach which uses the dynamic programming remains then

virtually the sole suitable method. The numerical solution of Bellman’s equation
is achieved with the help of a computer, due to the iterative nature of operations
involved.

In the case of pure heat transfer, the extremal specific work can be found

analytically for every process mode; the result is

I—C i_ f
S el

]i
e š ]i

=(7 7 ) c1 n— +cl
DEE ln-——f

=C
i—— —/

—-C eln_,_ e 2 l/2
i

—(7 1 ) 1
7

cl7 (H/c? ) ln—f=-—R,

where £ is the logarithmic intensity of the optimal process.

(10)

(11)
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The principal function 7, or its negative R=-I, constitute the solution of

the Hamilton—Jacobi equation for the work optimization problem. The particular
extremal work which describes the (generalized or classical) exergy should

contain the environment temperature as one of the boundary states. The finite-

time exergy is the maximal work W, __ :I(Ti,’ci,Tf,'cf) with 7' =T and

T/ =T¢ for the engine mode, and the negative minimal work

—-Whin =R(Ti,ti,Tf,”cf) with 7' =T¢ and T/ =T for the heat-pump mode.

For the vanishing intensities H or £ the change of the classical thermal exergy

is recovered.

A simple formula for the dissipative thermal exergy is obtained in terms of

the Hamiltonian

E =c(T-T°)-cT* In—TT7icTe(ltl/cTe)'/2 InT—7;= E,(T,T°,O)+T“Ss,

where E, (T,T",00) is the classical exergy, and S; =minS; is the minimal

entropy production. The upper sign refers to the heat-pump mode and the lower

sign to the engine mode.

In the case of simultaneous heat and mass transfer in an evaporation process,

the following molar exergy was found [°]

T X(l+X°¢ 1+ X¢
E, =(c, + ch)[(T— TE)-T° lnF]+RTe[Xln(l(Ü)x—e)Jr ml":r—XJ

3Sk LokBl (

This exergy also corresponds with underlying functions, J(T, Xt Xf jof )
and R(T,Tt), which are extensions of those described by Eq. (11).
As it 1s very easy to find these functions from Eq. (13), we do not write down the

respective formulae; yet, in analysis that follows, we assume that these formulae

are known. Of the two parts of the finite-time exergy, the classical one is known

from reversible thermodynamics. Thus one may use tables of E to evaluate the

associated minimal entropy production for the process. These results are both in

the spirit of the finite-time thermodynamics ["**'°] and the entropy generation
minimization ['*']. Both steady-state processes and their unsteady counterparts
can effectively be modelled ).

It follows that the classical exergy suffices for an exact estimation of the

extremal work for small H,,, i.e., for the excellent transfer conditions, or for

infinitely long times of the energy exchange. The generalized exergy E, serves

to explain the restrictive applicability of the classical thermodynamic bounds

(12)

(13)
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when they are applied to real processes, and to show that these bounds should be

replaced by stronger bounds obtained from non-equilibrium thermodynamics.
The classical exergy is the quantity which defines bounds on work delivered

from (or supplied to) very slow reversible processes. These classical bounds are

reversible in the sense that the magnitude of the work delivered during the

reversible approaching of the system to equilibrium is equal to the magnitude of

the work supplied, after the initial and final states are inverted, i.e. when the

second process reverses to the initial state of the first. Our results (12) and (13)

generalize the classical exergy for finite rate transitions.

Let us now discuss main physical properties of such transitions. During the

approach to the equilibrium the engine mode of the system takes place in which

the work lis released, during the departure from the equilibrium the heat-pump
mode occurs in which the work is supplied. The work W delivered in the engine
mode is positive by assumption. In the heat-pump mode the work W is negative,
which means that the positive work (—W) must be supplied to the system. The

optimization problems, which yield the generalized exergies and their underlying
potential functions / and R, involve the maximum of the work delivered,
max W, and the minimum of the work supplied, min(-W). We have shown that

while the reversibility property is lost for such exergy, its thermokinetic bounds

are stronger and hence more useful than classical thermostatic bounds. This

substantiates the role of the dissipative exergy for evaluation of energy limits in

practical systems.
The reversibility of bounds in classical thermodynamics means that with the

classical exergy, thermostatics simultaneously provides the lower bound on the

real work which should be supplied to the system, and the upper bound on the

work which can be released by the system. The work-producing process is the

inversion of the work-consuming process (the final state of the second process is

the initial state of the first, and conversely), and the duration of each process is

infinitely long. In thermostatics the two bounds on the work coincide. From a

more general viewpoint, the two processes (direct and inverse) represent the

destruction and creation of a non-equilibrium structure. Thus, in classical

thermostatics, the two bounds, the one on the structure destruction and the one

on the structure creation, coincide.

However, such static limits are often too far from reality to be very useful.

Whenever one takes into account the necessity of termination of the process in

finite time and inherent role of resistances as dissipative parts of the system (in
boundary layers, in particular), the finite-rate exergy provides stronger (lower
and upper) bounds on the real work which should be supplied to the system or

extracted from it. These bounds do not coincide, but they are more realistic than

the quasistatic bounds of classical thermostatics. It is the hysteretic effect,
caused by the dissipation, i.e., an increase of the exergy supplied in the pump

mode of the system (work consumption) and a decrease of the exergy released in

the engine mode of the system (work delivery), which makes thermokinetic
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bounds stronger than thermostatic bounds. The divergence of the bounds proves
that a large number of processes, which are permitted by classical thermostatics,
are excluded by limitations inherent in the process kinetics. Also, from the more

general viewpoint formulated above, the divergence of the bounds proves that

processes of creation of a non-equilibrium structure require larger magnitudes of

mechanical energy than processes of destruction of this structure. In the latter

only a part of the available mechanical energy can be released in a finite time. In

effect, the creation processes consume always more mechanical energy than the

corresponding destruction processes with inverted thermodynamic states of the

system.
Summing up, for a process and its inversion, the two bounds which coincide

in thermostatics diverge in thermokinetics, and the divergence grows with the

rate indices of the process. This means that, for sufficiently high rate indices, one

can obtain quite high lower bound on the supplied work and even vanishing
upper bound on the released work. The finite rate processes always increase the

absolute value of the extremal work supplied in processes departing from the

equilibrium, and decrease the corresponding work produced in processes

approaching the equilibrium. These conclusions, along with the quantitative
analysis presented in the series of works ['”°], provide a means for improved
evaluation of the mechanical energy limits in practical systems.

In particular, we can apply the above general results along with Egs. (11) to

(13) and principal functions I(T, X,T¢, X*,t/ ) and R(T, X,T°, X*,7/ )to the

important problem of irreversible cycles undergoing with finite periods. These

cycles can be described in standard thermodynamic spaces or in extended spaces

including the physical time or its monotonic measure (such as, for example, our

T or R) as an additional variable.

The irreversible cycles constitute closed loops in thermodynamic spaces.
However, in the extended spaces which contain time as an extra coordinate,
these cycles are no longer represented by closed loops, but by screwlines.

Thermodynamic cycles are projections of these screwlines into the space of

thermodynamic parameters. As this work shows, not all of the mathematically
possible screwlines are admissible from the viewpoint of the second law. In

other words, Nature admits only definite types of screwlines in the space-time
T— X — . Their basic property is determined by the requirement that in a real

cycle parts corresponding to work consumption must assure larger magnitude of

work than the parts corresponding to work production.
In conclusion, enhanced bounds are formed by the generalized exergy for the

work released (destruction) and consumed (creation) in real processes, in terms

of the residual generated entropy as the rate penalty. The hysteretic properties of

the generalized exergy as a finite-time work function are important. They are

associated with different values of the extremal work obtained when the process
which leaves the equilibrium is compared with its inverse, which approaches the

equilibrium. While in the classical reversible thermodynamics these two modes
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are accomplished with exactly the same magnitude of work, in the dissipative
theory the work of creation and work of destruction are no longer equal. A

significant decrease of the maximal work, received from the destruction of a

system, and an increase of the minimal work that has to be added to create a

system, is shown in the high-rate regimes and for short durations of

thermodynamic processes. This property makes it possible to exclude definite

cyclic evolutions as forbidden by the second law, which is a result important for

the theory of irreversible processes.
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ENDOPÖÖRATAVATE SOOJUSMASINATE MITMEASTMELINE

OPTIMEERIMINE LÕPLIKU AJA JOOKSUL

Stanislaw SIENIUTYCZ

Uldist mitmeastmelise optimeerimise teooriat on rakendatud Curzoni—

Ahlborni-Novikovi masinatest vdi soojuspumpadest koosnevate siisteemide

uurimisel. Optimeerimiseks on koostatud siisteemide mudelid, mis sisaldavad

juhtimis- ja olekumuutujaid ning mittejuhitavaid voi fikseeritud parameetreid.
Lähtudes klassikalisest ja lopliku aja termodiinaamikast ning energia analiiiisist

on optimeeritud erinevate masinate (soojus-, pdikese-, sisepdlemismasinate) ja
tiksikoperatsioonide (destilleerimise, keemiliste reaktsioonide) juhtimine.
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