
Proc. Estonian Acad. Sci. Eng., 1999,5,2, 131-141

131

MORPHOLOGY, STABILITY, AND MORPHOGENESIS

OF DIPOLE AGGREGATES

Dedicated to the 70th birthday ofRobert Heller

Michael GRINFELD

The Educational Testing Service, Princeton, NJ 08541, USA; mgrinfeld @ets.org

Received 1 October 1998

Abstract. In this paper, we establish some basic thermodynamic formulas and master systems
allowing one to explore analytically and calculate numerically equilibrium configurations and

quasi-static evolution of crystalline substances with dipolar interaction. All the master systems
are certain extensions of the equations of electro- or magnetostatics. To elucidate and emphasize
the “dipolar aspect” of the problem, we introduce and explore the simplest possible system
with dipolar interaction which we call the dipole aggregate. The dipole aggregates are able to

accumulate the dipolar electric or magnetostatic energy as well as the surface energy but cannot

accumulate any kind of the internal bulk energy. Our approach is based on the minimum-of-the-

total-energy principle, i.e., we assume upfront that the absolute temperature is fixed and constant

throughout the whole system. Our analysis of the equilibrium shapes of the dipole aggregates
and of their stability is based on the traditional tools of the Gibbs equilibrium thermodynamics,
namely, on the calculation of the first and second energy variations. Our analysis of quasi-static
evolution of the shape of the dipole aggregates is based on the non-equilibrium thermodynamics
of dissipative heterogeneous systems (in the spirit of the Onsager irreversible thermodynamics
with linear fluxes).
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1. INTRODUCTION

Various heterogeneous systems with dipolar interaction are of paramount
theoretical and practical importance in many branches of physics, chemistry,

biology, engineering, materials science, etc. For some of them, electromagnetic
interactions and their energy play a central role. For instance, in the problems of

ferromagnetism, ferroelectricity and superconductivity [l~3], in physics of colloids
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and liquid crystals [*~®], in modern approaches to shapes of solid crystals and

crystal growth [7], and in other disciplines. Naturally, thermodynamics plays
a significant role in corresponding theories. The reader interested in the state-

of-the-art of the thermodynamics of electromagnetic media and its applications
in continuum physics, mechanics, and materials science can find a wonderful

presentation in [®].

Despite the remarkable progress, which has been achieved in understanding the

thermodynamic foundations of electromagnetic interaction (see, for instance, 81,
as well as older textbooks and reviews [>°~l2]), several aspects of the everyoung

thermodynamics are yet to be developed in-depth and in-width. For instance, even

the very formula of the energy of dipolar interaction or the basic formula of the static

ponderomotive force acting on a dielectric body are both still under hot debates.

(E.g., The American Journal of Physics publishes several critical papers of that sort

annually.)

From the standpoint of thermodynamics, the latter formula is nothing else

but a derivation of the first energy variation of a heterogeneous system with a

dipolar (electric) interaction. Under these circumstances, it is not surprising that

the problem of the second energy variation of such systems has not been even

raised in scientific literature, to the best of the author’s knowledge. The problem
of the second energy variation is instrumental for the analysis of thermodynamic
stability. In this respect, the current situation with the second energy variations

for the systems with dipolar interaction is exactly the same as it was in the Gibbs

thermodynamics of heterogeneous systems with solid components just a couple of

decades ago. Actually, for almost a century, the problem of the second energy
variation of solid heterogeneous systems with sharp interfaces was completely
ignored. That is why thermodynamics of solids has not demonstrated, until recently,
any serious interest in morphological instabilities of interfaces. The development
of the theory of the second energy variation of heterogeneous solid systems has

led to the prediction of several unknown and unusual morphological instabilities,
some of which were observed experimentally later on. Currently, these instabilities

attract wide interest and rapid progress is achieved regarding both the theory and

the experiment.

We hope that future development of the theory of the second energy variation

of heterogeneous systems with dipolar interaction will be helpful in establishing
novel instability mechanisms in such systems. In contrast to the interfaces in solids,
the purely energetic morphological instability of electrically charged interfaces of

liquids can be easily observed with a naked eye. This instability has been analysed
by Lord Rayleigh more than a century ago. Since that pioneering study, several

morphological instabilities of interfaces in the systems with electric or magnetic
interactions have been explored for liquid substances. These studies are based on the

properly extended hydrodynamic equations rather than on purely thermodynamic
analysis. Because of different reasons, the author believes that it is a must for

the study of crystalline objects to develop a direct thermodynamic approach to the
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stability and quasi-static evolution which is equally applicable to solid and liquid
substances. Such an approach should bebased on the analysis of the first and second

energy variations of the systems with dipole interaction.

The isothermal equilibrium and stability of a vast majority of heterogeneous

systems with dipolar interaction can be studied with the help ofminimization of the

following energy functional:

g=/d+ / s&B,
Õ =

where Etotai 18 the total energy of the system comprising three ingredients: 1) the

(local) bulk free energy fn d%with the densityz per unitvolume, 2) the surface

energy fs d=l, with the density 1 per unit mass, and 3) the non-local dipolar
energyFg;,. The spatial integral in (1) is actually a sum of the integrals over smooth

spatial subdomains occupied by different phases. The surface integral is actually
a sum of the integrals over the external surface of the system and the interfaces

separating different phases. Depending on the particular problem in question, the

bulk free energy density 1, can be the function of 1) the elastic displacement
gradients VU for solids or mass density p for liquids, 2) the dipolar electric P or

dipolar magnetic M momentum of unitvolume for dielectric or magnetic media,

3) the gradient of dipolar magnetic momentum VM for ferromagnetic media, 4)
the director d and its spatial gradient Vd for liquid crystals. The surface energy

density is usually a function of the unitnormal N to the corresponding interface

=. Hence, there is plenty of practically useful applications which can be explored
with the energy functional like (1). In the cited literature, the reader can find many

presentations of variational techniques of dealing with the first two integrals (which
concern both the first and the second energy variations). The last term, the dipolar
energy, is quite universal: it is actually the same for all bulk and surface energy
models. So, the author thinks it is worthy to analyse it separately of the other two. It

is not to say that the dipolar energy is more essential than the other two ingredients;
in many cases the dipolar energy is something secondary. But it is the dipolar energy
term, the first variation of which has never been analysed sufficiently and second

variation has never even been considered (to the best of the author’s knowledge). To

that end we propose the simplest thermodynamic system the energy of which does

not include any bulk energy at all, and that includes the simplest surface energy term

only. We call these systems the dipole aggregates (DA).

In what follows, we present (without lengthy details) some traditional thermo-

dynamic issues like 1) calculation of equilibrium shapes, 2) the conditions of

morphological stability, and 3) the master system of slow morphological evolution

of DA. We disregard many special details of various DAs which are of primary
importance in particular applications of DAs and concentrate on the general
consequences of the following features:

1) the existence of a local (short-distance) crystalline order,

(1)
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2) the possibility of rearrangement of elementary “units” of the substance (i.e.,
the possibility of the boundary units to break theirbonds and, then, to migrate and

re-attach themselves to the DA in other places of the boundary),
3) the presence of a significant amount of the energy of the surface bonds,

4) the presence of a significant amount of non-local electro- and magnetostatic
energies of dipole interaction,

5) the ability to minimize the total energy due to the rearrangement.
To emphasize the most robust implications of these basic features we

deliberately ignore other more specific energy sources mentioned above, say, the

exchangeand the director-fieldenergies which are at the heart of the current theories

of ferromagnetism and of liquid crystals, etc. (We do not see any conceptual
obstacles for including different ingredients in the bulk free energy.)

Currently, it is widely believed that thermodynamic concepts are valid for a vast

variety of systems ranging over more than 20 decimal orders in space and time.

From that point of view, it is never known what are the most useful applications
of thermodynamic considerations. As an illustration of this thought, we show some

implications of the actual consideration to the objects belonging to the opposite side

of the length-scale, namely, to the megascopic objects studied in astrophysical and

geophysical fluid dynamics. The (in)stabilities of theses objects might have exactly
the same thermodynamic nature as some of the nano-objects.

2. A SIMPLE MODEL OF DIPOLE AGGREGATES

For the sake of brevity, in the following we will mention the DAs with electric

interactions only (for the thermodynamic aspects raised in this paper the difference

between electric and magnetic interactions is purely semantic).
We deliberately limit ourselves to the simplest model of the substance and

ignore all external force fields and all ingredients of the accumulated energy E,..
However, we do consider the electric energy of the constituent dipoles E,; and the

surface energy E; accumulated at the external boundary S ofthe volume 2 occupied
by the DA (Fig. 1): E,. = E; + E;.

We assume that each elementary unit (or “atom”, or “molecule”, or cell of

periodicity) of the substance has a fixed shape and a fixed dipole momentum p.

By a fixed dipole we mean that both the absolute value of p and its orientation

with respect to the atom are fixed. The orientation of the vector p in space can

change if the unit rotates with the DA as a whole. Relative positions of the units

with respect to each other are assumed fixed due to the bonds of different nature. In

Fig. Ib, the bonds are shown schematically as certain specific locks. In our model,
the energy accumulated in the locks is formally neglected. The assumption does not

mean that this “locking” energy is small (it might, in fact, be huge) but we assume

that the “locking” energy per lock is fixed. However, possible change in the total

locking energy at the external interface is taken into account. The locking energy
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associated with the external interface S can alter due to rearrangement of the near-

boundary elementary units. In fact, we assume that the locks can be unlocked by
certain energetically favourable fluctuations. Then the “atom” can move along the

interface or in its vicinity (or even tunnel through the bulk) and stick to the DA

in a new position. In this new position the total accumulated energy is less than

that of the original configuration. In other words, the total accumulated energy and

the shape of the DA can change substantially due to such a rearrangement. Since

both, the total electric energy and the total surface energy, are shape-sensitive, the

equilibrium shape corresponds to the balance of the two ingredients.

3. THE EQUILIBRIUM SHAPE OF DIPOLE AGGREGATES

We proceed with a formal presentation of the physical model described above.

Conservation of the total mass of the incompressible DA implies the conservation

of its total volume V' in the process of the rearrangement

/ da = V°.

o

The shape of the domain {2 can change due to the rearrangement.
Because of the assumptions made, the dipole polarization vector p, as well as

the polarization P per unit volume, remain constant in all points of the DA. Since

an equilibrium configuration of the isolated DA is defined up to an arbitrary rotation

of a DA as arigid whole, we can assume that the vectors p and P are fixed in space

and, in particular, theyboth point in the same direction of a fixed unit spatial vector 1.

The total electric energy of the isolated DA in vacuum is equal to

Eq= —š /dOPE = — šP / dOE,
Õ Õ

Fig. 1. Macroscopic view (a), microstructure (b), and an elementary cell (c) of a dipole aggregate
M- bonds and locks, p — dipole vector.

(2)

(3)
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where E is the electric field in the space generated by the dipoles of the DA. In one

case, the z*components of the field E in any Cartesian (or affine) coordinate system
can be presented by the following explicit formula:

; 1 ; 1
E,-(zk) = PJVZVJ/dD*l—sz;T = PJVI/dS*N‘;m

O S

Integrations in (4) are with respect to the coordinates z*’, N 7 is the outward

unit normal to the surface S. In the following we use standard rules and

notations of tensor calculus (see, for instance, ['3]): the Latin (spatial) indexes

run the values 1,2, 3; the Greek indexes run the values 1,2 and are related to the

surface coordinates on S; V; and V, are the corresponding symbols of covariant

differentiation.

Since the field E is shape-sensitive, the total electric energy is a shape-
sensitive quantity too. The potential ¢(z) of the electric field satisfies the following
equations:

1) inside and outside the DA

V'Vip=o

2) across the interface S

[SO]t =O,

[D;]*N*=O,

3) at infinity
@(00) =O,

where D; = E; + 47P; is the electric induction and [A]“_L is the jump of the field A

across the interface S.

The specific energy o per unit area ofthe surface S can be chosen to be apositive
constant, so that :

E, = /dSa.
S

Hence, we arrive at the problem of minimization of the functional E,. subject
to an isoperimetric constraint of the total volume conservation (2), where both the

energy and the constraint depend on the shape of the DA.

We conclude that all the non-trivial variations in our variational problem are

the normal displacements C' of the boundary S. Somewhat lengthy calculations,
which cannot be reproduced here (they are quite similar to those in [!1]), lead

to the following expression of the first energy variation of the functional E* =

Eqoe — A[ d9:

SE* = — / dSC (aßg + P*Eky + 27P;P;N'NI? + A) ,

S

(4)

(5)

(6)

(7)

(8)

)

(10)
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where B is the tensor of the second quadratic form of the interface S (see, for

instance, ['3]), A is the Lagrange multiplier for the volume conservation constraint

(2), and E is the limit of the electric field as we approach the surface Sof the DA

from inside.

The choice of the displacements C' in different points of the interface S is

arbitrary. We arrive at the following equation for possible equilibrium shapes of

the DA

08% + P*Ey, +2nP,P;N'N? = —A.

In addition to Eq. (11), the full system of equilibrium equations includes also

Egs. (2) and (5)—(8). It is clear from physics that at least one of the solutions

of the system should resemble a spheroid elongated in the 1-direction (the dipole
energy is the least if all dipoles form a line whereas surface energy will be

least for the spherical shape). That is probably why Heisenberg assumes that

ferromagnetic domains take on the needle-like shape. Landau and Lifshits [3]
do not share this opinion, though. So far, the author has not been able to find

analytically the equilibrium shape of a finite DA. However, there are certainly
no exact solutions having an ellipsoidal shape. Equation (11) allows different

unbounded solutions: 1) an infinite lamella with plane parallel boundaries and

arbitrarily oriented polarization vector, and 2) an infinite circular cylindrical tube

with the coaxial polarization vector P. Despite their “unboundedness”, these

solutions are certainly instructive for understanding various features of DA. We

discuss below how to calculate possible equilibrium shapes of the DA numerically.

4. STABILITY OF DIPOLE AGGREGATES

In order to study the stability of an equilibrium shape of DA, we calculate the

second energy variation. Relevant calculations (similar to those of Chapter 4 of4D
lead to the following formula:

FE*=- o / dSC (Vf*vac+ CBng)
S

+ / dSC (—P'“õEk+ +4nP'P! N;z?VoC — CNlP'“VlEk+),
S

where z;* is the shift tensor of the boundary (see ['*!]) and JE; is the variation of

the field E; caused by variation of equilibrium position of the boundary S.

The problem of morphological stability of the interface with respect to the short

wavelength variations, localized close the interface variations, is much easier than

the general stability problem and much more interesting from the standpoint of

physics. In fact, if the near-boundary disturbances are much shorter than the radii

(11)

12)
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of curvature of the boundary and the spatial inhomogeneity of the DA, one can

safely limit himself to the study of the stability of the uniform half-space. In this

situation the system is translationally invariant in the in-plane directions, and the

Fourier analysis of the second energy variation gives all required information on

the necessary conditions of morphological stability.
Realization of this programme results in the following formula of the second

energy variation in terms of the Fourier-components C*(k) of the interface

disturbances with the in-plane wave vectork:

2p* =R/ d2kC*(-k)C*(k) |k] {alkl + 2 (l-lgll—g (k P) - (N: P)2>}
Equation (13) shows that the normal component P | of the polarization vector

P destabilizes the interface, whereas the tangential componentP stabilizes it. The

interface is absolutely stable provided the tangential component is greater than the

normal one:

Pul 2.IP.II.1= IPI

If the opposite inequality is true, then morphological stability is guaranteed for

sufficiently short surface rearrangements. The long surface perturbations are still

unstable. The critical (neutral) in-plane wave vectors k,;; satisfy the following
formula: s

o—lkeriel = (e P)? = (N - P)?,

where e is unit in-plane vector which is collinear with the vector k.

We turn now to the stability of a DA in the shape of an infinite cylinder with

axially directed dipoles. The axial electric field partially stabilizes the well-known

Plateau—Rayleigh morphological instability with respect to the sufficiently lengthy
axisymmetric shape variations. We denote by R the equilibrium radius of the

cylinder and by k& the axial wavenumber of the disturbances. Using the formula

of the second energy variation (12), we arrive at the following equation binding
the neutral (critical) disturbance parameter ( = kR and the dimensionless ratio

I' = 47nP?R/o (describing the trade-off between the DA-dipole and the DA-

surface energies):

(1-3)ex (w294r=
where Iy and K| are the zero-order Bessel functions of imaginary argument
bounded at ¢ = 0 and ¢ = 00, respectively. Any standard software allows one

to plot the root ¢(I") of Eq. (16) and to see the growth of the critical wavelength
when I increases.

In the context of astro- and geophysical hydrodynamics, the axial magnetic
field stabilization of the self-gravitating liquid cylinders was first investigated by
Chandrasekhar and Fermi ['°].

(13)

(14)

(15)

(16)
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5. SLOW EVOLUTION OF DIPOLE AGGREGATES

In this section we present the system allowing one to calculate possible

equilibrium shapes ofDA using the technique of surface-diffusion-minimization in

the spirit of the onsageristic linear irreversible thermodynamics.
In order to satisfy the mass conservation constraint (2), we choose C'in the form

of the surface divergence V,J* of the surface vector field J¢ (which some people
are inclined to interpret as the surface flux of the substance)

C = VgJP.

The decay of the total energy along the trajectory is obviously guaranteed ifone

chooses the following constitutive equation of J*

J? = —%V? (OBG + P* By, + 21BPN'N')
where s is a positive constant. Excluding J? between (17) and (18), we get

C = -xVV? (082 + P*Bpy + 2PPN'N) .
This technique allows one to find equilibrium shapes of DAs starting with any

configuration satisfying the constraint (2). For this configuration one has to solve

the standard electrostatic system (5)—(8) and then to calculate the surface scalar field

C using Eq. (19). The initial shape should be, then, upgraded by “moving” the

boundary along the outward normal N* for the distance C. Iterating the procedure
with the upgraded shape one can find the (stable!) equilibrium shapes of DA

satisfying the “chemical” condition (11).
Not all researchers are inclined to accept the linear irreversible thermodynamics

and the theory of surface diffusion, in particular. Needless to emphasize though, that

regardless of its validity from the standpoint of physics, this technique allows one

to find possible equilibrium shapes of DAs numerically. The calculated equilibrium
shapes are certainly sensitive to the choice of the initial configuration. There is no

need to struggle against this non-uniqueness, it justreflects the nature of the problem
in question.

6. CONCLUSIONS

We have analysed some aspects of thermodynamic basics of equilibrium shapes
and stability of aggregates with dipole electrostatic or magnetostatic interactions.

In order to calculate the equilibrium shape of the simplest model of DA, described

in Section 2, one has to solve the standard electrostatic system of equations (5)—(8)

subject to the mass conservation constraint (2) and the condition of equilibrium with

respect to mass rearrangement (11).

(17)

(18)

(19)
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The morphological stability of DA can be analysed by means of the second

energy variation given by Eq. (12). In particular, we established that, even in the

absence of the surface energy stabilization the interface ofDA is morphologically
stable with respect to any local rearrangement, provided that the tangential
component of the dipole momentum vector is greater than the normal component of

that vector. Otherwise the wave vector of the stable corrugations should be greater
than k..;; defined by Eq. (15) and depending on the surface energy density and

on the orientation of surface corrugations. The local morphologic stability of the

interface in each point does not guarantee the stability of the DA in whole. For

instance, the tangential orientation of the dipole electric field guarantees the local

stability of the interface. However, a DA in the shape of an infinitecylinder is stable

with respect to sufficiently lengthy corrugation: Eq. (16) allows calculation of the

critical wavelength of the radially symmetric corrugations.
The equilibrium shape of the DA can be calculated numerically with the help

of an iteration procedure based on the system (5)—(8) augmented with the evolution

equation (19). I hope that this system can be used as a convenient tool not only
in the experimental study of the equilibrium shapes of DAs but also in the study
of morphogenesis of DA caused by slow evolution of, say, surface energy or of

certain external parameters of the media. Some modifications of the master system
are required for such considerations. Among numerous problems which can be

addressed by means of the evolutionary system formulatedabove, the following are

the most intricating from physical and mathematical viewpoints.
1. What are possible equilibrium shapes of an isolated DA?

2. How many differentequilibrium shapes of an isolated DA do exist? Are they
necessarily axisymmetric?

3. Is an isolated equilibrium DA necessarily homomorphic to a sphere? In

particular, is there an equilibrium toroidal isolated DA?

4. Is there a maximal (critical) volume of an isolated DA?

5. Can the equilibrium shape of an isolated DA bifurcate?

The distance between the theory of electro/magnetostatics of DA and of a

dynamic theory of DA is obviously much greater than the distance between the

statics of Archimedes and the dynamics of Newton. But if the “diffusion-like”

minimization, described in the last section of this paper, is capable of describing
certain real evolutionary processes ofDAs, the above list can be extended with the

following problems.
6. Can two DAs collide and how do their shapes evolve in the process of

colliding?
7. Does the Ostwaldripening take place for DAs?

Regardless of its ability to describe any real physical process, the consideration

of the “diffusion” system presented above is a useful step in the development of

the computation-visualization methods in the physics of the DA morphogenesis.
In particular, it is instrumental in answering all the above questions by means of

computational experimentation.
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DIPOOLAGREGAATIDE MORFOLOOGIA, STABIILSUS

JA MORFOGENEES

Michael GRINFELD

On kasitletud lihtsate dipolaarsete siisteemide teooriat. Uuritav objekt — dipool-
agregaat — on voimeline akumuleerima elektri- voi magnetostaatilist energiat ning
samuti pinnaenergiat, kuid mitte siseenergiat. On esitatud dipoolagregaatide ana-

liiisiks ja numbriliseks simuleerimiseks vajalikud vorrandisiisteemid ja termo-

diinaamika seosed, mis voimaldavad méérata nende tasakaaluseisundeid jakvaasi-

staatilist evolutsiooni.
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