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Abstract. A method to describe the complex material behaviour of solids at finite strain is

proposed. The method is based on the concept of the dual variables and on the assumption
of intermediate configurations. Kinematically correct additive decomposition of the strain is

presented. Geometric linear constitutive models are generalized for the finite strain theory. An

application and an example are given for thermoelastic-plastic analysis.
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1. INTRODUCTION

Solids usually show complex material behaviour. The forming processes
of engineering materials consist of elastic, plastic, viscoelastic, creep and other

deformations. Ifthe deformation is large, the mechanical model is complicated. In

the following we propose a method for modelling materials at finite deformations.

The method is a generalization of the multiplicative decomposition of the

deformation gradient for the elastic and plastic parts proposed by Lee and Liu [!].
Hartmann and Haupt [?] and Liihrs [3] developed similar procedures for the special
cases of plasticity and viscoplasticity.

In this work we divide the deformation gradient into an arbitrary number of

components. The strain and stress are calculated using the concept of the dual

variables introduced by Haupt and Tsakmakis [*].
The paper is organized as follows. First, the basic relations are given, then we

show the decomposition of the deformation. A general form of the constitutive

relation for each deformation component is presented. Finally, an application and a

numerical example are given to illustrate the results.
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2. BASIC RELATIONS

The deformation gradient tensor is [°]

A
oX

where x and X are the position vectors of a material point in the current and

reference configurations, respectively.
In the reference configuration the Lagrange strain tensor E and the 2nd Piola—

Kirchhoff stress tensor S are chosen as conjugate variables [°]

Ko (F'F -1),
2

S =det(F)F IoF 1
=F 17F7,

where o is the Cauchy (true) stress, 7 is the Kirchhoff (weighted Cauchy) stress

tensor and 1 denotes the second order identity tensor.

3. KINEMATICS

We assume n deformation components, therefore the total deformation gradient
tensor is given by the product

F=F,F,_l--Fr---FaF,

with det(F;) > 0. The decomposition results in diverse fictitious intermediate

configurations beside the reference and current configurations.
»

Using the multiplicative decomposition of the deformation gradient, an additive

decomposition of the Lagrange strain tensor E can be derived. The component E;

is the deformation between two configurations next to each other:

:

j LT
.9 )E = ZEi, with Ei =

ž (‘l’z ‘l’i MW

1 Wi

t=l

where the tensor ¥, is defined as

1, for k=o,

Wi = Fa+>Fi. Br o<k<n,
F, for k=n.

In the kth configuration the strain I'*, the ith strain component I‘f, and the stress

T* are calculated using the concept of the dual variables:

(5)
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A

The rates of the strain, the strain components and the stress, denoted by ™,
A v

I‘f and T*, respectively, are Oldroyd derivatives and are given also by way of dual

variables
A

1t = ¥TE®;!=l"+LF Tk 4 TFLE,
A

= .TEe! = FilbRl BiLE
v..

k TT = @S =T —LFT* - TL*".

The velocity gradient in the kth configuration is defined as L* = Vk‘llgl.
In the reference configuration (k = 0) the dual variables give the Lagrange

strain I' = E, I'Y = E;, and the 2nd Piola-Kirchhoff stress T° = S; the strain

and stress rates are simply equal to the time derivatives. In the current configuration
(k = n) the dual variables give the Almansi strain tensor I'" = a, Almansi strain

components 17 = a;, and the Kirchhoff stress tensor T = 7. The straip and

stress rates can be expressed in terms of the velocity gradient L™ = 1 = FF~:

hdled. s . 2. . T==
5 (l+l ), I'N=a;,=a;+ll'a;+aland T"=7= 7-1— 7I".

4. CONSTITUTIVE RELATIONS

A generalization of the geometric linear constitutive model for the finite strain

is proposed. The method of generalization is the replacing of the stress and

the linearized strain with dual variables in the geometric linear relation for each

deformation component.
The constitutive relation for each deformation component is written in terms of

an isotropic functional. The constitutive relation for the jth deformation component
given in the kth configuration is

k k
F {T ,r’f,---,rf,} =O.

The functional contains the stress and one or more strain components. If the

configuration is a natural configuration of the constitutive relation, the functional

contains only one deformation component

Fi ma ri] {TJ Ly 1}:0, or J—'ji{TJ' rj]»L 3 =0

The constitutive relation is objective and can be transformed between

configurations without loosing objectivity, using the strain components only. For

more details see Appendix A.

)

(8)

(9)
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S. APPLICATION

The theory is now applied to a deformation process which consists of elastic,
plastic, and thermal expansion parts. In this case the multiplicative decomposition
of the deformation gradient is

¥ = F3F2FI == FeFon,

where det(F,) > 0, det(Fg) > 0, and det(F,) > 0. (Exactly this decomposition
was used by Idesman and Levitas [], and the strain decomposition of Simo

and Miehe [B] can also be understood to be similar to our method.) Beside the

reference configuration By and the current configuration B, the plastic intermediate

configuration BY and the thermal intermediateconfiguration BY also result from the

decomposition.
The constitutive equations are formulated in the intermediate configurations

and then transformed to the reference and current configurations, therefore all

strain tensors in the different configurations are needed. The dual variables for

this decomposition are presented in Appendix B. The constitutive relation can be

formulated by means of a set of differential equations instead of functionals [°].
The constitutive model is a generalization of the geometric linear constitutive

model of thermoplasticity for finite deformation. The elastic deformation is

formulated in the thermal intermediateconfiguration and follows Hooke’s law

8 0 V gT = 24 [l*e+l—2ytr(l“e) I],
where p is shear modulus and v is Poisson’s ratio.

The relation between thermal strain and temperature is defined in the plastic
intermediateconfiguration as

=(-60)1

where « is the thermal expansion coefficient. If the thermal expansion part of the

deformation gradient is written in the form Fy = J„1/31, the thermal volumetric

expansion is Jp = (2a (8 — 6p) + 1)¥/2.
The plasticity model is formulated in terms of the plastic intermediate

configuration. To define the elastic domain a von Mises yield function F' is used

1
F = šdeVTp : devT? — §(;y(s)?,

where dev(.) = (.) — žtr(.)l, ”:” denotes the inner product of two second order

tensors [°], and oy, (s) represents the yield stress function for the isotropic hardening
material

(10)

(11)

(12)

(13)
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Here oy, is the initial yield stress, H is the linear hardening modulus, and s is the

accumulated inelastic strain defined by its time derivative. The associative flow rule

1S

A OF
—

p
—

: : :
7= AW = AdevT?, for F=o and loading in the plastic range, (15)

0, for all other cases.

The plastic deformation is isochoric if and only if

d A A

Because of the deviatoric tensor dev(TP), the flowrule satisfies the condition above.

The set of the constitutive equations is transformed to other configurations and

is given in a general form in Table 1.

The meaning of the quantities in the equations are summarized for different

configurations in Table 2. We note that the tensors g, and g, are the metric tensors

on the plastic and the thermal intermediate configurations, respectively.

Elasticity condition: & = 2u [Qo_lée@;l +ä (g;l : še) š;l]
Thermal expansion: ; = a(8 — 80) €y

1 1,
—

1
Yield condition: F= 5 [(šp&šp) :Õ- ; (g,: 0')2] — šaš
Hardening: Oy = Oy, + Hs

Ä . 2 —1 A —1 ...A
Plastic arc-length: $=1/3(8% €&|&

1
A ' e e B A

0.

Table 1. General form of the constitutive equations

Configuration Eaaun g

By Ee Es E, S 2E, +1 2E, + 2Eg +1

B? 17 1) Iéš T7 o 01 217 +1

B! %Yy I?f, T° g e 1

Bi a, ag š, T 1—2ayp—2a, 1-—2a,

Table 2. Configuration-dependent tensors of the constitutive relation

(16)
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In the case of metals we can assume strain components to be small. This

assumption results in a simplification of the numerical procedures. The quantities
in the constitutive relations are presented for different cases in the current

configuration in Table 3, where €., €4 and €, are the linearizedelastic, thermal, and

plastic strain tensor components.

6. EXAMPLE

A thick-walled tube in plane strain under internal pressure p = 400 MPa with

outer radius 7, = 100 mm and inner radius r; = 10 mm is considered. The

temperature at the surfaces is 8, = 0 °C and 8; = 100 °C.

The constants for the constitutive model are u = 77.9 GPa and v = 0.3 for

the elasticity relation and o = 10~° 1/°C for the thermal expansion. In the plastic
region oy, = 100 MPa and H = 2 GPa.

We performed the numerical calculations with the FE-system MARC. The

thermoelastic-plastic constitutive relation was implemented using the user sub-

routine hypela2.f. We assumed small elastic and small thermal deformation

components and large plastic deformations. The temperature field and the thermal

expansion are calculated with built in routines of MARC.

The tube was thermally loaded, then the internal pressure was applied. Figure 1

shows the equivalent Cauchy stress on the inner and outer surfaces as a function of

the applied pressure after the thermal load was applied.

Fig. 1. Equivalent stress at the inner and outer surfaces

alalalo]b |b

: A
Elastic N oY 1 — 2ag 1

, A
Elastic, thermal ae W N 9 1 1

Elastic, thermal, plastic €. &g €p o 1 1

Table 3. Tensor quantities in case of small strain components
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7. CONCLUSIONS

A method for solving the problem of complex material behaviour at finite

deformations has been developed. An additive decomposition of the strain, based

on the multiplicative decomposition of the deformation gradient, has been derived

using the concept of the dual variables. In the application of the method and in the

example, a simple thermoelastic-plastic problem has been solved.

With this method various constitutive models of elasticity, viscoelasticity,

plasticity and viscoplasticity may in a simple manner be generalized for the theory
of finite deformations.
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APPENDIX

A. TRANSFORMATION OF THE CONSTITUTIVE RELATION

First, we transform the constitutive relation between two configurations next to

each other. The strain and the stress in the kth configuration expressed in terms of

the (k — I)th configuration are

k ~Trk—lp—l —llpk=lyl—-IpT
D; =F, [; F, =RU, r; U, R,

T = T =R U T URE

where the local polar decomposition Fy = R;Uy (U, = Uf and R;' = R})
was used. Replacing the transformed variables in the functional of the constitutive

1/2
relation, using the equation I——:—l = —š— (Uš —l)— Ui = (21*',2—1 +1) ,

and

considering that the functional does not depend on the rigid rotation Ry, the

transformation of the jth constitutive functional from the kth to the (k — l)th
configuration is

F {T’“,l"f,-“,f‘fi} — ]:;9—l {Tk—l,rllc—l,__.,rfi_l} — 0.

The constitutive relation is transformed only by the strain tensor I",g_l.

(17)

(18)
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B. DUAL VARIABLES IN DIFFERENT CONFIGURATIONS

In this appendix, the dual strain and stress measures are given for the

deformation components.

Reference configuration:

E=E, +Ey+E S

E, = %(Fng—l) Ep: %(FZFP+F£FP)
Eo =1 (FIF;F,F, —F,F,)

E. = § (F'F — F,FF4F,)

Plastic intermediate configuration:

Pt P 8 40y4T 'IZ=FPSF§
7 =3 (1-F,7Fy') T7= 317 +197)

D; = 3 (FöFy -1)

I 7 = L (ETFTF,F, - ÕFy)

Thermal intermediate configuration

17 =Tls+l4+l% '[Z = F,FSF, Fj

= bTF;)~F;TF;TR ;) T9= 15 +L2 1 + T4L

Tj=3(l-F;Fg")
1 = 1(FIF, -1)

Current configuration

a=a,+ag+a, T = FSF”

-Tr-Tw-ln- P

A
ap = S(F;TF,"F;'F;! —FTF!) o —ap=äp +a +3a

ag = 3(F;TF; — F;TF;TF;'F;)
ae = $3(l-F-F7')

(19)

(20)

(21)
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TAHKETE KEHADE TERMOELASTNE-PLASTNE ANALÜÜS
LÕPLIKEL DEFORMATSIOONIDEL

Arpad MEGGYES Gyula BEDAPeter HAUPT ja Jozsef UJ

On esitatud meetod, mis voOimaldab kirjeldada tahkete kehade keerukat

kéditumist 10plikel deformatsioonidel. Meetod baseerub duaalsete muutujate kont-

septsioonil ja vahepealse deformeerunud oleku paradigmal. On tehtud kinemaati-

liselt korrektne deformatsioonitensori aditiivne dekompositsioon. Geomeetriliselt

lineaarsed olekumudelid on iildistatud 16plike deformatsioonide juhule. Teooriat

on rakendatud termoelastse-plastse deformatsiooniprotsessi kirjeldamiseks ning
toodud numbriline niide.
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