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Abstract. A novel approach to construct an algorithm for simulation of wave propagation in

elastic media is presented. The method is based on the idea that each element of a continuum

can be considered as a cell, the state of which is determined as a thermodynamic state of

the corresponding element of the medium. The concept of discrete thermodynamic systems
is used for thermodynamic description of the non-equilibrium states of these elements. In

the framework of this concept, the contact quantities are introduced, which determine the
interaction of an element with its neighbourhood. The interaction between elements of the

medium is described in the Gibbsian phase space instead of the space of physical variables.

Specification of contact quantities depends on the considered process. As a result, relations are

obtained which couple the non-equilibrium state of an element with states of its neighbours.
Therefore,we can formulate the rules of evolution for the elements of a continuum to model the

process by means of the cellular automata technique. The proposed method is a tool for direct

simulation of a process rather than for solution of partial differential equations. Nevertheless,
in simple cases it can be reduced to classical finite-difference schemes. Results of numerical

experiments are presented.
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1. INTRODUCTION

The problem of elastic wave propagation is well studied both theoretically and

experimentally [l~4]. It is a part of the theory of elasticity, which, in its turn, is a

part of the general theory of continuum mechanics [*°].
In the case of linear elasticity, stress and strain tensors are coupled by Hooke’s

law [®]
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where o;; are components of the Cauchy stress tensor, €;; are components of the

strain tensor, A and y are the Lamé coefficients, d;; is the Kronecker delta, and

Ekk = €ll + €22 + €33 In view of the summation convention.

Deformation rate is determined only by linear terms [°]

Dei1(dw ,dw
õt 2 ÕlB]' ox; )’

where ¢ is time and u; are components of the vector of the deformation velocity.
The Newton principle of linear momentum can be written in the form [>:¢]

e
T o

where pg is density of the medium.

Introducing the time derivatives ofthe stress tensor according to Hooke’s law (1)
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we can rewrite the full system of equations of linear elasticity in terms of stresses

and velocities of deformation. In the two-dimensional case we have []
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where 1 and v are the components of the deformation velocity.
If we could obtain a solution of the system of equations (5)-(9), which

satisfies corresponding initial and boundary conditions, the problem of elastic wave

propagation would be solved. Unfortunately, exact solution of these equations is

known only in a few simple cases ['~*]. In practice, numerical methods are usually
applied. Here we return to a discrete representation of the continuous medium,
which is governed by a certain approximation of Egs. (5)—(9). In this way, we

can try to simulate the process directly instead of the improvement of the numerical

approximations.
The main goal of this paper is to develop a method for the modelling of elastic

wave propagation by means of cellular automata technique. It should be noted
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that classical cellular automata are discrete dynamic systems [2]. The discreteness

means that space, time, and properties of the automaton can have only a finite,
countable number of states. The main idea is not to describe a complex system
with complex equations, but to let the complexity emerge by interaction of simple
elements following simple rules [%].

Cellular automata are built up from identical cells which are arranged in a two-

dimensional lattice. The future state of each cell depends only on the current state

of the cell and on the states of the cells in the neighbourhood. The development of

each cell is defined by rules which describe the interaction between cells.

We shall try to extend the main ideas of cellular automata for the case of the

continuous space of state which is only suitable for the modelling ofthe elastic wave

propagation in a continuous medium. To define the state space of cells representing
elements of a continuum, we shall use the concept of discrete thermodynamic
systems [?].

2. DISCRETE SYSTEMS

Discrete system is a generalization of the concept of a thermodynamic system
which allows us to take into consideration non-equilibrium states of the system
[?]. The interaction between neighbouring systems can be described by intensive

non-equilibrium contact quantities, namely, the contact temperature @, the dynamic
pressure p, and the dynamicchemical potentials [l9], if the interaction consists of

heat exchange (), of work exchange W, and of time rates of the mole numbers of

different species n° due to external material exchange.
The extended state space of a discrete system in a stationary frame and in

absence of external deformations can be chosen as follows [l°]:

Z = [V,n,U, @apal-l';T*ap*?P‘*}'

Here Uis the internal energy of the system, V' is volume, 7%, p*, and p*
correspond to the equilibrium environment.

The contact quantities provide a complete thermodynamic description of non-

equilibrium states of a separated discrete system [l].

3. ELASTIC MEDIUM

In the case of an isothermal elastic medium, we describe the external

deformation of an element by linearized strain per unit mass p, lsij [®]. The non-

equilibrium element interacts with its surroundings during an irreversible process

through a transfer of work and heat. In the isothermal case, this interaction is

described by the Cauchy stresses. The work exchange is determined as follows [l?]

s
2

O’ijé‘ij. (11)
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To generalize the concept of discrete thermodynamic systems for the elastic

media, we need to introduce dynamic stresses 3J;; by the following inequalities

€ij (B 4 —0;) 20 (Q=lo W =0),

where o 7 is the stress tensor in the equilibrium environment.

After introducing the deformation variables, we come to the extended state

space of a discrete system representing an element of isothermal elastic medium

without mass exchange
& {Eij,U, Zij;dfj}.

The time rate of internal energy is determined by the work exchange

- OÜ.
U = aõ„.

It can be shown that additional conditions should be fulfilled between

neighbouring systems to provide the independence of the thermodynamic
description from the chosen size of the cells:

(U™ + EM) g(U+D) 4 Eln+))
66,‘_7'

C

ÕEÜ
)

where E(™) is the interaction energy which corresponds to one of the neighbouring
systems.

Consequently, the conditions of interaction (15) can be expressed for each pair
of interacting cells in the form

+1 +1ng) + Ez(.?) = ag—' )
+ 25;: ),

if we suppose that the interaction energy has elastic nature.

It should be noted that the dynamic stresses represent contact forces acting on

the chosen element or cell. Their action results in the variation of deformation

velocity according to the Newton principle of linear momentum. The latter can be

expressed in the two-dimensional case as follows

poulit = poub +a (Eh) -(B + Ch) - G|,
— - kpovit! = pob +3 [(EA)S - (B 3 + CR) - E)š],

where 2,L and 3. correspond to the opposite sides of the cell, respectively, and a

and b are constants. Here superscript & corresponds to the time step, and subscripts
27 point the cell number.
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At the same time, we should bear in mind that stressesand strains are coupled by
Hooke’s law (1). An approximation of this law we can represent in the form which

is convenient for using in cellular automata

(Ull)ffl = (Ull)fj +C(A+2“)((U+)£€j - (U—)fj) +CÄ((V+)£°J' - (V—)fj),

(Uzz)ffl = (022)5j+0()\+2#)((v+)fj — (V—)fj)+oÄ((U+)fj - (U—)écj)a

(o12)5" = (o12)f; + du((VIT)E; - (VIIT)S + (UTTC)) - (UTT)Š)),
where ¢ and d are constants and U, Ul, and V, V'l are certain contact deformation

velocities.

4. BUILDING A CELLULAR AUTOMATA ALGORITHM

FOR ELASTIC MEDIA

There is a lot of possibilities for choosing the contact quantities in the case of an

elastic medium. At the first look, the natural way is to identify the dynamic stresses

with values of stress components for the corresponding cells in the neighbourhood.
However, such achoice leads to non-monotonic calculation results. The best choice,
in our opinion, is to use the exact solutions of the dynamic one-dimensional problem
for each side of the cell [!3]. In this case, the contact quantities are determined as

follows
k k k k
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where ¢, = ’/H—zuandcs = \/ZPO Po

Now we have all the equations which are needed for calculations. If we

determine constants a, b, ¢, and d as equal to the ratio of the time step to the size

of the cell, we come to the well-known explicit finite difference scheme [*3].

5. BOUNDARY CONDITIONS

For the sake of simplicity, we consider a rectangular area limited by the straight
lines £ = 9,2 = N,y = Yo,y¥ = yi. To calculate all the desired quantities by

means of the system of equations (17)~(21), we need to determine (£7;)5;, (375)6;,
(V17)g;» and (U~ )§; at the left boundary z = o, the values of (£7;)%.,, (55)%;,
(Vl"’)fvj, and (U+)§Vj at the right boundary z = zy, the values of (25,)%,
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(25)%, (V) and (UI7)E, at the lower boundary y = yo, and the values of

(£5,)5x (Z3l)ks (Vl)k, and (UIF)% at the upper boundary y = yx.

We start with the left boundary. Two first conditions for the contact

quantities express the conservation of the Riemann invariants along corresponding
characteristic lines ['3]
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If boundary conditions

al’u(l‘o,y, t) + fl1011($0,y, t) = fl(y)t)a

a2U(fEO,y, t) + ,32012(1'0,3/,75) = f?(yat)

are prescribed at this boundary, we can approximate them by relations

a 1 (U7)E; + B (ZO)6, = iy

= fo;.
1 )gj =(2122(V17)5; + 802

Here «; and [3; are constants, and f;(y, t) are certain prescribed functions. Now we

obtain the possibility to calculate all the needed quantities at this boundary.
At the right boundary, other invariants are
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Boundary conditions at this boundary are approximated in the same way as above.

Description of the boundary conditions for upper and lower boundaries is

analogous.

6. NUMERICAL RESULTS

As an example, a finite aperture radiation into rectangular two-dimensional

specimen with stress-free boundaries in various situations is presented. The

excitation is made by prescription of the non-zero normal component of the stress

tensor within one third of the length of a boundary only at the first time step. The

physical properties of the medium are: A = 8, u = 3, pp = 1.

The results of calculations in terms of surface plots for normal stress are given
in Figs. 1-3. One can see dispersion, reflection, and interaction of elastic waves.
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Fig. 1. Surface plot of the distribution of the normal stress in a rectangular specimen excited at the
left boundary.

Fig. 2. Surface plot of the distribution of the normal stress in the case of perpendicularly
propagating elastic waves.

Fig. 3. Surface plot of the distribution of the normal stress in the case of interaction of the elastic

wave with a crack in the middle of the specimen.
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First, the propagation of one elastic wave is presented in terms of the

corresponding normal stress (Fig. 1). The wave propagation is accompanied by its

dispersion and interactionwith stress-free boundaries. Further, two identical elastic

waves propagating in perpendicular directions are presented (Fig. 2). Theirmutual

interaction forms slightly more complicated patterns. At last, the interaction of a

wave with a crack is presented (Fig. 3). The crack was located in the middle of the

specimen and its length was one thirdof the width of the specimen. All waves have

the same initial intensity oy = 1 and they are presented for the same time (after 150

time steps).
These results are in good agreement with those calculated by means of a

different technique [**].

7. CONCLUSIONS

It is shown that direct modelling of elastic wave propagation in solids is

possible. This method is developed on the basis of cellular automata technique
and realized in a program for the two-dimensional case. Results of numerical

experiments are presented. The results correspond with those published recently.
It should be noted that the cellular automata algorithms are not the best choice

from the point of view of numerical mathematics. They support only the explicit
method of calculation and use only a regular grid. Nevertheless, such algorithms
are preferred if we are going to simulate a complicated process, because rules

of updating the states of the cells can be changed easily to include necessary
variations. However, the extension of cellular automata concept onto continuous

media is not simple. It becomes possible only afterthe contact quantities are defined

in the framework of the thermodynamics of discrete systems. The development
of this theory is not finished yet and requires more efforts in understanding the

correspondence between constitutive equations and the description of interaction of

elements in the Gibbsian phase space.
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KAHEMÕÕTMELISE ELASTSE LAINELEVI MODELLEERIMINE

RAKUAUTOMAATIDE PIDEVA ALGORITMI ABIL

Arkadi BEREZOVSKI

On esitatud uus meetod elastse keskkonna lainelevi modelleerimise algoritmi
koostamiseks. Meetodi aluseks on idee, et pideva keskkonna igat elementi saab

vaadelda rakuna, millel on iseloomulik termodiinaamiline olek. Selliste mitte-

tasakaalus olevate elementide termodiinaamilise oleku kirjeldamiseks on kasutatud

diskreetsete termodiinaamiliste siisteemide kontseptsiooni, mille raames viiakse

sisse elemendi ja keskkonna vastastikust moju kirjeldavad suurused. Nende

valik sOltub vaadeldavast protsessist. On saadud tingimused, mis seovad iga
mittetasakaalus oleva elemendi oleku teda iimbritsevate elementide olekuga.
Selline pideva keskkonna elementidemuutumisseaduste formuleerimine voimaldab

kasutada protsesside modelleerimiseks rakuautomaatide algoritmi. Esitatud meetod

ei ole diferentsiaalvorrandite lahendusmeetod, vaid véimaldab protsesside otsest

modelleerimist. Lihtsamatel juhtudel on saadud meetod taandatav üldtuntud

numbrilistele arvutusskeemidele. On toodud kolm numbrilist ndidet elastsete

lainete levi kohta.
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