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Abstract. Important part of the governing system of equations of moving solids consists of

the constitutive relations. The latter involve usually four tensorial variables. One possible way
to find the form of such a relation for copper is to assume the existence of an acceleration

wave. Then the constitutive relations contain only two tensorial variables. This is shown for

a constitutive relation obtained as a generalization from the first author’s experiment. While

the results of such investigations depend on the highest order derivatives appearing in the

constitutive relation, we also study the solid body as a dynamic system. In such a way we can

obtain more information including also the lower order terms.
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1. INTRODUCTION

The equations of solid mechanics are the equation of motion, the kinematic

equation, and the constitutive equation. The equation of motion and kinematic

equation are first order partial differential equations, thus it is expedient to look for

constitutive equations in the form of apartial differential equation, too. Suppose that

an acceleration wave propagates in a solid. Then the system of partial differential

equations should satisfy the integrability condition. Further properties of solids and

the general system of partial differential equations are based on the first author’s
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experiment with the uniaxial state of stress [}2] and his suggestions concerning the

generalization of the experimental result for the three-axial state of stress [3].
If the system of the basic equations is written in the form of an evolution

equation and the initial and boundary conditions are also taken intoconsideration, a

dynamicsystem can be defined [*°]. In the final part of the paper such aconcept will

be applied for the uniaxial constitutive equation of Section 4. Dynamic systems play
an important role in the stability theory [®7]. Here the connection between stability
conditions and the form of the constitutive relation is studied.

2. BASIC EQUATIONS AND COMPATIBILITY CONDITIONS

The basic equations of solids for small deformations are the following: the

equation of motion
jo,

jiol +¢" = pv
,

together with the condition

oW = o]l’

the kinematic equation

ij
= Vij+vjsi

and the supposed constitutive equation

f g

)

=O.7!
k Emn:£: Õpa» Emn, )k 6

&) pqZ] ( Pq; ) 7£

The constitutive function f;; is symmetric: fi; = fji. |
The notations in Egs. (1)(3) are: o'/ — stress tensor, €;; — strain tensor, ¢* —

density of the body force, p — mass density, v; — particle velocity, ¥; — acceleration

of the particle. The indices i, j,m,n = 1,2,3 indicate the spatial coordinates of

tensors or vectors, k,...,p = 1,2,3,4, and z* = x4 = tis the time. The upper
index marks the contravariant and the lower one covariant derivative of a tensor or

vector. For example, o,k is the covariant derivative of the covariant stress tensor

opq- Cartesian rectangular coordinates will be introduced but the upper and lower

indices will be used for indication of summation when the upper index is equal to

the lower one.

Let us consider the acceleration wave. The wavefront is ¢ (:vä) = (. Derivative

of ¢ will be denoted by -

6<p“%9 =

5.7
The unit normal vector of the wavefront is

Pa
n =

(1)

(2)

(3)
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and the wave speed c is [Š]
c-- PA—

VWp(P]'
It is known that the speed of wave propagation ¢ can be obtained from the

following equation ° :

ppdz? = 0.

The compatibility conditions [°] are:

— the dynamic compatibility condition

,uik‘Pk = pPY4Vi,

Hij = Hji,

— the kinematic compatibility condition

2Kijp4 = Vipj + Vi,

— the constitutive compatibility condition [3]

o 0 r

.3xx | x
PfU (apq,k +p'pq<pk, Gmn,[ +'€mn<p£, apq, qu, T )

— 13) — 0,
o

Jij 00 iy € n.t)9pq: €pgy T —ij pg,k’ “mn,

where ,uf Or [ipq, Kij, Vi are the wave amplitudes of stress, strain, and acceleration,

respectively; 3pq z and gmn ; are the stress and strain derivatives before the

wavefront. Equation (7) is a system of partial differential equations for the function

¢. Thecharacteristic equations of the condition (7) are

dxp/Õfij/ÕSOp = dt/afij/&m,
where f;; and ¢, have fixed indices.

From Egs. (4) and (8) we get

Mijfi(pfi =O,

where

M —

fij
Hie 7 Kke-

”

do
W

85k£,fi1
ke,p

Indices «, 3,7, . . .
will be used for abetter view of the essence of what follows.

The new index « is a function of former indices i, 7, that is,

y
[i i=j

Tli+j+l f igj.

(4)

(5)

(6)

(7)

(8)

(9)
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Now M,* is expressed as M, or more precisely

mp=a, | O,+ A2%
a

955
B

957;3 %

Following new notations

spa VappIa j 9 - Va 4_of
dopp T

v

are introduced for the next section.

3. THE EXISTENCE OF ACCELERATION WAVES

The acceleration wave exists, that is, the system of partial differential equations
(7) satisfies the integrability condition, when the Poisson bracket of f, and fz is

zero [%lo]
_

ofaofs ofa9fp
(fas f5) =

pp d? — d dn
>

0.

Equation (11) takes then the following form [!!]

(for f5) = M [(Sfi"iuafi + E[;”Hyp) p; + (859#19 +ef—za) pp + Nflfi]
-M P S. EL .

v 0 A N B

B a Uop+Eo Kkyp) p;+ Salby +eaks)pp +Nap| =O,

where 1195 and k. 5 are Apg/dzP and dk.,/dzP, respectively, Ms = 0 because

of Eq. (9), and
-

D afa
Map =

ä?p

Finally [?]

öf 4 4

Nop = 55 = (SEusp + ETkup) p; + (sõus +edrs) pp + fop-

Equation (12) is satisfied in case of arbitrary ¢:, 119, and k., when the following
equations are satisfied:

'SS

— S 5 g+ (SPES — SPET)kyp=O,(Safipsfl’fl e Sfiflpsa'fl) Hp + (Sa EB Sfl a YP

g 7 bg7 9PpVi _ «9:3E7i)„=o(EaÜPS'B'YZ — EBÜPSO'W) [T + (Ea EB Efl a YP ;

(10)

(11)

(12)

(13)
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Equations (13) will definitely be satisfied if [3]

i i j

Ea 7 = H'Y'thõ]
67 A?

that is,
Ofa

_ H’st‘_% =O,
367; J 3053

and
pp

+ Hakop =A 5 — 095 Hyp
y3

wP

One of the solutions of Eq. (15) is

fa (Dsjaaü + hl,'yc„,x'õ) = (),

where

õj N

Constitutive equation f, = 0 contains two tensor variables 25509 + h19767 and

four coordinates z!,z2, z3,t. It does not contain four coordinates if the solid is

homogeneous and independent of time.

Equations (14) are definitely satisfied if [3]

Nyp = 0.

The wave propagation condition can be derived from Egs. (5), (6), (9) (with
indices «, 3, ...), and (15). This equation is

_2p (S — SPnyc?) + SaõiH"šin„VC - Sa6sH"§3nn7np] pr=o.

Since p, # 0, we have

det [2p (S — SlPnpc*) + SaõšH"šjn,?c — SaõjH"gjn„Vnp] =O.

This is called the wave speed equation, being an 18th order algebraic equation for c.

In Eq. (19) "U(Zj()p) = (giqnpnj + gjqn”ni) [ll] where g, is the Kronecker delta.

4. A SIMPLER CONSTITUTIVE EQUATION

The first author’s experimental and theoretical investigations (uniaxial dynamic
tensile stress) have shown that the constitutive equation of copper can be taken in

the following form [%+?]

(15)

(16)

(17)

{185)

(19)
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where

>

õa Oe Oe

Jt—at, Gt——a? and emza—m.

The wave propagation condition is

Öf395 OfAL(p%—tc +sac a€x>u—o.
Again, as u # 0, we have

of 3. 9. 8.
põ—atc +õetc Oey

=0

However, there is no general method to obtain constitutive relations for the

three-axial case starting from the uniaxial case. By comparing the coefficients of

ct, c?,¢3 inEgs. (21) and (18), a formal generalization can be suggested. If Eq. (21)
does not contain second power of the speed c, then assume that Eq. (18) does not

contain it either. Thus f, is a function of the same types of variables as f in (20).
Now the wave propagation condition is

A% (2pgl9“’c3 + H"?Mnnwc — H"g„ln„“'np)] w = 0,

and the final equation reads

det (Zpgfi“’ce’ + H"f%nn“’c — H"s4nn“’np) =O,

since

det (8.94) #O.

Using v, which can be expressed by Egs. (5) and (6), instead of p,,, Eq. (23)
can be written in a more convenient form

] kP nin, )=03 k 9 pinic+H*P.nen np) ,det (pgqic — H"menlc +H™

where the index 4 is omitted. This equation is a 9th order algebraic equation for the

speed of propagation c. Equation (24) has got at least two positive and two negative
real roots.

5. CONTINUUM AS A DYNAMIC SYSTEM

Let us return to uniaxial cases and study the instability problem of a ribbon

of length L with homogeneous boundary conditions as a stability problem of a

(21)

(22)

(23)

(24)
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dynamic system formed by Egs. (1), (2), (3), and the boundary conditions [°].
Assume that constitutive equation (20) has the form

oc=di€+ d2% + d3e + d4O

1.6.,

of -OF [IP
öat?é(), dl—õet/öat,

aLJA» JA » /A
2

el e TN oy’ N ooy

First, taking
Of—
otoot

we have d4 = 0.

By following [+s], Egs. (1), (2), and (25) can be transformed into the governing
eguation

& 0? o 3
p U= dlw’v—(}hw’v—dQfi’U:O.

Assume that v° is a stationary solution of (26) satisfying the boundary
conditions. By introducing new variables for the small perturbations

—

0Yy =v—o —7— 70 - .

> R V-V, y3=v—vo,

Eq. (26) can be transformed into system

Y 1 = Y 2
Y 2 = Y3,

p 1 (( ? 93
gpeiakai byL= 29j Lo

&

D 572 261:3) yi +d5;3/2)-
The characteristic equation of the differential operator defined by the right hand

side of (27) is

)‘yl = U2,

AY2 = ys,
,D ö ö o?

Ay3 =

.
((d3-6';§ — d2s) Y 1 +dl-B?y2)’

or in a more compact form

(25)

(26)

(27)
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2
2== 0 (31)
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In the theory of dynamic systems the sign of the real part of the eigenvalues of

the characteristic equation is an indicator of stability. If they are all negative, then

the state ofthe material is stable. If they change sign, then there is a loss of stability.
It may bea static bifurcation (a real eigenvalue becomes positive), or a dynamic one

(at the loss of stability the eigenvalue is purely imaginary).
For homogeneous boundary conditions

yi = e?
,

wkzk_fl. k
7

= 1,2,..

a complex equation

X3p + Adyp} + dayp? + idapl = 0

is obtained.

The necessary condition for a static bifurcation is

s =dy=0

Then

Ak =0

and from (29) we obtain

A3k = TP/ di.

While d; > 0 (see ['?]), these are all real values and half of them are positive, that

is, this case is not a stability boundary.
For dynamic bifurcation the necessary condition is

ds =O.

Assume now that A = £ + iw. Then for £ = 0, the imaginary parts in (29) are

governed by
-w*pw + wdlY? + d2ž =O.

Equation (30) should always have at least one real solution w = w()y). Thus, for

this kind of material only the dynamic bifurcation is possible.
Now let us study the case when in (25) instead of e the stress o is present:

f. 2
Oe =O, öa:'éO'

Then d 3 =O, ds # 0 and the characteristic equation (29) with homogeneous
boundary conditions is

(29)

(30)
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The necessary condition for a static bifurcation, from (31), is

d3 =0

and for the other (nonzero) eigenvalues

X2p —d4A + dl% = 0

The solutions of (32) are

dy + 4+/d2 — 4y2di
da =

———

In (33) the sign of d 4 has a great importance. If it is negative, then there is a static

bifurcation, but in case of d 4 > 0 it does not exist.

For the dynamic bifurcation the condition is

dy =O,

we have Eq. (30) and the same results for the eigenvalues as before.

As we have already seen, the analysis of uniaxial static bifurcation requires a

strain-independent constitutive equation. To extend this result for the three-axial

case let us assume that f, does not depend on €’. Then we can use a scalar

function U*

U* = o'6')'6 + W (0'174,619;3766 — 75) .
Let f, be of the form

ou*
fa = —Õ——' =O,

Yo Va =ta

1.E.,
oW

fa=o%a- 56;»7(5:56 =O,

where

WMW
ove e’

It means that, finally, from (34) follows

OW (op4, €95, 0)
a

Instead of six equations f, = 0, only one scalar function U* (or W) should be

found to obtain constitutive relations.

(32)

(33)

(34)
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6. CONCLUSIONS

By assuming the existence and finite speed of the acceleration wave, the

paper shows that the wave propagation condition can be used for determining the

constitutive equations. The main results can be summarized as follows.

1. Acceleration waves do exist, if the constitutive equation has the form (16)
and the wave speed equation (Eq. (24) or (19)) has two positive and two negative
roots.

2. When the constitutive equation of a solid does not depend on the stress

gradient (like copper [!+2]), the wave speed equation is determined by a 3 x 3 matrix

(Eq. (24)).
3. From the dynamic bifurcation conditions we get that at least one of 0f/0o

and Jf/e should have non-zero values.

4. The condition for the loss of stability of a static bifurcation is

of
5 #O.

Thus, in the analysis of a static bifurcation (analysis of shear banding, or neck

forming instabilities), the form of a possible constitutive equation is

f(o,ol,€t,€z) = 0.

5. When the constitutive equation does not depend on the strain, a scalar

function can be used to describe material properties.
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VASE OLEKUVÕRRANDITE TULETAMINE KIIRENDUSLAINETE

JA DÜNAAMILISTE SÜSTEEMIDE TEOORIA ABIL

Gyula BEDA Peter B. BEDA

On néidatud, et fiitisikalisi tingimusi, mis médravad kiirenduslainete eksis-

teerimise, on vOimalik kasutada olekuvorrandite funktsionaalse kuju middrami-

seks. Niitena on toodud esimese autori eksperimendil pdhinev vase pinge
ja deformatsiooni seose mddramine iihedimensioonilisel juhul. Meetod lubab

tildistamist keerulisematele pingeolukordadele.
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