Proc. Estonian Acad. Sci. Engng., 1998, 4, 2, 89-105
https://doi.org/10.3176/eng.1998.2.02

FORMAL VERIFICATION OF THE BINARY
EXPONENTIAL BACKOFF PROTOCOL

Jozef HOOMAN

Department of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, NL 5600 MB Eindhoven, The Netherlands; e-mail: hooman@win.tue.nl

Received 12 February 1998

Abstract. We present a formal framework for the specification and verification of distributed
real-time systems. To obtain mechanical support, this framework has been defined in the
language of the proof checker Prototype Verification System. Intermediate stages of the
design are represented by mixed terms where specifications and programming constructs can be
combined. Compositional proof rules allow the verification of design steps. Here we focus on
the rules for parallel composition and hiding. Their use during protocol verification is illustrated
by a part of the Hypertext Transfer Protocol, the binary exponential backoff protocol.

Key words: specification and verification, distributed real-time systems, compositional proof
rules, verification of design steps.

1. INTRODUCTION

Distributed real-time systems usually have a large number of possible
executions, making exhaustive testing impossible. To increase confidence in the
correctness of such systems, which are often safety-critical, we investigate the use
of formal methods. Formal verification could be done after the complete program
for the system has been written, but this will be extremely complex. Hence, we aim
at the verification of design steps during the process of system development. This
verify-while-design paradigm allows an early detection of design errors, ideally
leading to the systems that are correct by construction.

Clearly, the formal verification of a realistic system requires suitable tool
support. Usually there is a large number of proof obligations. Although many of

89

https://doi.org/10.3176/eng.1998.2.02

them are often almost trivial, they have to be checked carefully (not checking such
details is a source of many errors). A tool is needed that can discharge trivial proof
obligations automatically. Moreover, mechanical support is needed to keep track
of the dependencies between definitions, lemmas and theorems, especially since
specifications and designs are frequently changed during the development.

Formal specification of real-time systems requires a formalism in which the
timed occurrence of events can be expressed. A large number of formalisms has
been devised, often extending non-real-time frameworks, such as temporal logic,
process algebra, automata, and Hoare logic (see, e.g., ['?]). Here we consider
a basic framework in which a component is simply specified by spec(Eset, A),
where E'set is the alphabet of the component (the set of events that form the static
interface), and A is an assertion expressing its timed behaviour. Timing is expressed
in terms of a conceptual global clock of an external observer of the system.

Mixed terms are used to represent intermediate stages during system design,
where parts of the system are already implemented and other parts are only
specified; they allow a free mixture of specifications and programming constructs.
Let Spec; => Specy denote that Spec refines (i.e. implements) Specy. Then, a
design can be represented by a chain of subsequent refinements of mixed terms. For
instance,

Spec <= (Speci||Specsy) <= ((Speci1; Speci2)||Specs2)
<= ((z:=5; Speci2)|Specs2), etc.

Formal verification of refinement steps is based on compositional proof rules,
that is, for each compound programming construct there is a rule in which a
specification for the construct can be derived using only the specifications of the
components, without knowing their implementation. Hence, components can be
considered as black boxes, which can be implemented later according to their
specification. As an example, consider the parallel composition rule which is
especially important during the early stages of system development. We will
show that we can obtain a sound rule of the following form, expressing that
parallel composition corresponds to the conjunction of specifications, provided
some conditions on the specifications hold.

conditions on specifications
spec(Esety, Ay) || spec(Esety, Ay) = spec(Eset) U Esety, A] A Aj)

Moreover, the refinement chain above shows that it should be possible
to perform refinements in a certain context. For instance, from
Specy <= (Speci;; Speciz) we should be able to derive (Spec| Specss)
<= ((Speciy ; Specia)||Specs2). This is formalized in the so-called monotonicity
rules. For instance, for parallel composition we have

comp) => comps, compy => compy
compy || comps => comps || compy

90

Similar rules can be given for other programming constructs. Soundness
of these proof rules is based on a denotational semantics, which expresses the
timed behaviour of programming constructs. In this paper, we focus on parallel
composition and hiding. The hiding construct can be used to encapsulate internal
events.

As an application of our formal framework, we present a general approach
to verify distributed real-time protocols. This is illustrated by the verification of
a Binary Exponential Backoff algorithm, which is part of the Hypertext Transfer
Protocol (HTTP) [?].

Tool support for our mixed framework is obtained by formulating it in the
language of the verification system PVS (Prototype Verification System) [%°].
The language of PVS is based on typed higher-order logic and contains a large
number of pre-defined types. Typechecking is not decidable, but might generate
proof obligations (so-called Type Check Conditions). Moreover, PVS contains
an interactive theorem prover, which contains powerful decision procedures to
prove simple properties automatically. In general, the user can prove a theorem by
applying commands that simplify the goal until it can be proved automatically.

We do not only use PVS for the verification of concrete applications, but also
for the development of a theoretical framework, for instance, to obtain mechanically
checked soundness proofs of the verification rules. Further, we frequently use
the “putative” theorems, i.e., we try to prove properties that ought to hold. A
failure to prove such a property reveals errors, whereas a successful proof increases
confidence in the formalization. All theorems and lemmas presented here have been
proved in PVS.

The remainder of this paper is structured as follows. Primitives to reason about
real-time properties are defined in Section 2. Section 3 contains the basic semantic
framework to express the timing behaviour of components. The timed semantics of
parallel composition and hiding is defined in Section 4. Verification rules for these
constructs can be found in Section 5. They are used in a general approach to protocol
verification, as formulated in Section 6. In Section 7, this approach is applied to the
Binary Exponential Backoff Protocol. Finally, Section 8 contains a few concluding
remarks.

2. REAL-TIME FRAMEWORK

The verification system PVS provides a very general type higher-order logic and
allows structuring and modularization by means of parameterized theories. To be
able to deal with a particular class of applications, the users have to define their
own framework in this logic. Since we want to describe the behaviour of real-
time systems, first, a number of timing primitives are introduced in a general theory
TimePrim.

91

This theory has three parameters, a type 7ime and two orders on this type, using
the pre-defined predicates strict_order? and partial_order? The theory contains
an assumption about the usual relation between the two orders. If a theory imports
TimePrim with a particular time domain and certain orders, PVS generates Type
Check Conditions, requiring that the orders are indeed strict and total, respectively,
and property leq_less holds. Naturally, we could also define < by <, but we have
chosen for the assuming clause to be able to exploit the pre-defined types and orders
of PVS, and thus make optimal use of the associated decision procedures of PVS.

The standard boolean connectives are overloaded for predicates on Time, i.e.
functions from Time to bool. Intervals are considered as a set of time points, which
are in PVS also represented as functions from Time to bool. As indicated by the
dots “...”, we only show some of the definitions.

Next, we define when a predicate holds inside or during an interval. As
an example, we show a simple lemma named dur_inside concerning the relation
between these primitives. It can be proved automatically by the PVS proof checker.

TimePrim[Time : TYPE, < : (strict_order?[Time]), < :
(partial_order?|[Time])] : THEORY
BEGIN
ASSUMING
leq_less : ASSUMPTION Y (t1,t2: Time): t; <ty & t; <ty Vi3 =t
ENDASSUMING

t,to,t1,t2 : VAR Time
P,Q : VAR pred|Time]

P : pred[Time] = At: -P(t);
PAQ: pred[Time] = At: P(t) AQ(%);

[to,tl] : setof[Time] = {t | S EALS tl}
[to,t1) : setof[Time] = {t| to <tAt <t}

I : VAR setof[Time]
PinI: bool = 3t: te IAP(t)
P during I : bool = Vt: te = P(t)

dur_inside : LEMMA —(P in I) & (=P) during [
END TimePrim

Henceforth, we do not repeat declarations of variables, using for instance,
t,to,%1,... as variables over Time. Moreover, we omit the structure of theory

92

names and imported theories, but focus on the main ideas. For more details about
the formal framework we refer to [©].

3. SEMANTIC PRIMITIVES

Program semantics is defined in terms of the events that can be observed at any
point of time. For simplicity, to emphasize the main concepts, we do not consider
the local state of a component here. More details on the incorporation of a local state
can be found in [7].

Events are represented by a non-empty type; particular events can later be
defined as constants of this type. Basic primitive is an observation function, which
assigns to each point in time the set of events that occur at that time. Operations on
sets are overloaded to operations on observation functions.

Events : NONEMPTY_TYPE
ObsFuncts : TYPE = [Time — setof[Events]]

0,01, 09 : VAR ObsFuncts
Eset : VAR setof[Events]

01 Uog: ObsFuncts = At: o1(t) Uos(t)
oNEset: ObsFuncts = \t: o(t) N Eset
o\ Eset: ObsFuncts = At: o(t) \ Eset
o C Eset: bool = Vt: o(t) C Eset

The basic structure to describe program components is given by type Complnfo,
consisting of records with two fields: « represents the alphabet of the component
and obs describes the possible behaviours by a predicate on observation functions.
The type Components requires that an observation of a component contains only
events of its alphabet.

Complnfo : TYPE = [# a : setof[Events],
obs : pred[ObsFuncts] #]

ci: VAR Complnfo
CompProp(ci) : bool = Vo : obs(ci)(0o) = o C a(ci)
Components : TYPE = {ci| CompProp(ci)}

93

Component comp]l refines component comp2, denoted by compl = comp2,
if the alphabet of “specification” comp2 is contained in that of “implementation”
compl and any behaviour of compl is also one of comp2. The refinement relation
is reflexive and transitive.

comp, comp0, comp1l, comp2, comp3 : VAR Components

compl => comp2 : bool = a(comp2) C a(compl) A obs(compl) C obs(comp2)

RefRefl : THEOREM comp => comp

RefTrans : THEOREM (comp0 => comp2) <
(3 compl : (compO => compl) A (compl => comp2))

Specifications consist of an alphabet and an assertion, i.e., a predicate on
observation functions. To obtain a framework of mixed terms, a specification is also
of type Components. An observation of a specification should satisfy the assertion
and additionally contain only events of the alphabet (to obtain CompProp). For
simplicity, specifications contain a single assertion here, but the framework can be
extended easily to a framework with, for instance, pre- and post-conditions.

Assertion : TYPE = pred[ObsFuncts]
A, A1, Ay : VAR Assertion
Valid(A) : bool = Vo: A(o)
spec(Eset, A) : Components = (# a := Eset,
obs := Ao: o C EsetA A(o) #)

Observe that o(t) (read) expresses that event read occurs at time ¢ in observation
o. It is often convenient to be able to write o(read)(t) and then, using the primitives
of TimePrim, also o(read) in [>7]. This is achieved by means of a conversion.
E : VAR Events
At(o)(E)(t) : bool = oft)(E)
CONVERSION At
This means that an occurrence of o(E)(t) is interpreted as At(o)(E)(t), i.e.,

o(t)(E).

94

4. SEMANTICS OF PARALLEL COMPOSITION AND HIDING

In this section, a denotational semantics of parallel composition and hiding is
defined.

4.1. Semantics of parallel composition

The denotational semantics of the parallel composition of two components is
defined in terms of semantics of these components. For the alphabet, we simply take
the union of the alphabets of the components. Hiding of internal events is considered
a separate operation, defined in the next section. Inspired by the trace-based untimed
semantics of parallel composition [®], we define the timed behaviour by means of
so-called projections, here represented by intersection. The main requirement is
that the projection of an observation of the parallel composition onto the alphabet
of one component, should lead to an observation of this component. Additionally,
observations should only contain events of the alphabet.

//(compl, comp2) : Comps =
(# a = a(compl) U a(comp2),
obs := X o: (301,09 : obs(compl)(o;) A obs(comp2)(0z2)A
oNa(compl) = 01 A o N a(comp2) = 02A
o C a(compl) U a(comp2)) #)

The definition above is convenient for the soundness proof of the verification
rule that will be presented in the next section; other equivalent versions, e.g., using
the intersection of behaviours, can be found in [®]. We have proved that parallel
composition is commutative and associative.

ParComm : LEMMA compl // comp2 = comp2 // compl

ParAssoc :
LEMMA (compl // comp2) // comp3 = compl // (comp2 // comp3)

4.2. Semantics of hiding

The hiding (or encapsulation) construct comp - Eset hides the events of set Eset
from component comp. Clearly, this means that these events are removed from the
alphabet. Moreover, the events from Eset are removed from the observations of
comp.

— (comp, Eset) : Comps =
(# @ := a(comp) \ Eset,
obs := XAo: (3o;: obs(comp)(o;1) Ao = o; \Eset) #)

95

5. VERIFICATION RULES

We present the consequence rule and the rules for parallel composition and
hiding. The soundness of these rules has been proved in PVS on the basis of the
semantics of the previous section.

5.1. Consequence rule

The consequence rule allows us to weaken assertions.

ConsRule : THEOREM EsetO0 = Eset A Valid(4g = A) =
(spec(Eset0, Ag) => spec(Eset, A))

5.2. Rules for parallel composition

It is rather easy to show the next monotonicity property, which makes it possible
to perform refinements in a parallel context.

MonoPar : THEOREM (compl => comp3) A (comp2 => comp4) =
(compl || comp2 => comp3 || comp4)

The next rule for parallel composition essentially expresses that the parallel
composition of specifications corresponds to the conjunction of assertions. To
achieve a sound rule, it is required that the validity of the assertion of a component
depends only on its alphabet, as expressed by predicate OnlyDepEve.

OnlyDepEve(A, Eset) : bool =Vo: A(o) < A(oN Eset)

ParCompRule : THEOREM OnlyDepEve (A1, Esetl)A
OnlyDepEve(As, Eset2) =
spec(Esetl, A;) || spec(Eset2, Ay) =
spec(Eset] U Eset2, A; A Aj)

The soundness of the parallel composition rule, i.e., theorem ParCompRule,
has been proved along the following lines. Assume OnlyDepEve(A;, Eseti), for
i=12

First observe that the alphabets of the components on both sides of
the refinement are equal. Next, consider an observation o € obs(spec(Esetl, A;)
|| spec(Eset2, Az)). Let ¢ € {1,2}. By the definition of the semantics, there exists
o; such that o N Eseti = o; and obs(spec(Eseti, A;))(0;), thus A;(0;). Hence,
A;i(o N Eseti). Then OnlyDepEve leads to A;(0). Since o C Esetl U Eset2, this
leads to o € obs(spec(Eset]l U Eset2, A; A A3)).

96

5.3. Proof rules for hiding

For the hiding construct, we also show a monotonicity property expressed by
the theorem HideMono. Next, we prove a rule which expresses that a set of events
can be hidden by simply removing it from the alphabet, provided the assertion does
not depend on the events removed, i.e., it only depends on the resulting events.

HideMono : THEOREM (compl => comp2) = (compl — Eset => comp2 — Eset)

HideRule : THEOREM OnlyDepEve(A, Eset \ Eset0) =
spec(Eset, A) — EsetO => spec(Eset \ Eset0, A)

The soundness of this rule is proved as follows. Assume
OnlyDepEve(A, Eset \ Eset0). First observe that o(spec(Eset, A) — Eset0) =
a(spec(Eset \ Eset0, A)). Next consider o € obs(spec(Eset, A) — Eset0).
Hence there exists an o0; such that o = o;\Eset0 and 0y €
obs(spec(Eset, A)), thus 0; C Eset and A(0;). By OnlyDepEve(A, Eset \ Eset0)
we obtain A(o; N Eset \ Eset0). Since o; C Eset this leads to A(o; \ Eset0) and
hence A(o). Since o C Eset \ Eset0, we obtain o € obs(spec(Eset \ Eset0, A)).

6. APPLICATION OF PROTOCOL VERIFICATION

The formal framework is rather general, intended for a wide range of
applications. It is convenient to have some guidelines for a particular class of
applications. Here we consider the verification of distributed real-time protocols
and formulate a few simple steps for a network of nodes.

1. Model the application domain, i.e., describe the main primitives that are
needed to express the service specification.

Specify the service to be provided by the network.

Specify the communication mechanism between nodes.

ol o

Specify the protocol performed by each node, in terms of its alphabet only.

5. Verify the protocol, using the parallel composition rule (and the consequence
rule), i.e., prove that the specifications of the nodes (point 4) and the
communication mechanism (point 3) lead to the required service (point 2).
Internal events can be removed by the hiding rule.

97

7. BINARY EXPONENTIAL BACKOFF PROTOCOL

As an example of the approach in the previous section, we consider the
verification of the Binary Exponential Backoff Protocol, a small part of the
HyperText Transfer Protocol HTTP/1.1. This protocol is a proposed standard,
described in RFC 2068 [3]. It organizes the transfer of data between a client (e.g.,
a network browser) and a server. The client and the server communicate by means
of a TCP connection.

Document RFC 2068 describes only the client part of the protocol, along the
following lines.

1. Initiate a new connection to the server.
. Transmit request headers.

. Initialize R to the round-trip time (if known) or to five seconds.

. Wait for an error or 1" seconds.

2

3

4. Compute T' = R", with N, the number of retries.

5

6. If no error has been received after T seconds, start transmitting data.
7

. If the connection is aborted, repeat step 1.

Given this description, the figure shows the events that are relevant for the
Binary Exponential Backoff Protocol.

request, data

SERVER
CLIENT TCP
abort
error
Client and server of the HTTP.

RFC 2068 is unclear about the purpose and the context of this protocol, but a
domain expert provided some useful hints. The idea is that the client wants to send
data to the server and requests permission to do this. The request, however, might
be invalid, e.g., because the authorization code is not correct, and the server sends
an error message (instead of a normal response). If the error is delayed, the client
decides to start sending the data already (step 6 above). When the server receives
too much unwanted data, it aborts the connection, and then also the error message
might get lost. Consequently, the client will try again, with a new time-out value.
The protocol is intended to guarantee that the client eventually receives the error.

98

Our aim is to investigate the essential functioning of the protocol on an abstract
level to achieve better understanding. This includes relations between the timing of
components and, for instance, the value of the time-out of the client.

7.1. Model the application domain

As a time domain, we take the reals with the standard orderings, which are
already available in PVS. Our real-time framework is incorporated by importing
theory TimePrim. Moreover, the framework of the previous sections is imported,
although this is not shown here. Messages and nodes are defined as enumeration
types, which implies that all elements are different, a fact that is used by the decision
procedures of PVS. A send and a receive of a message by a node and an abort
are declared as events. Moreover, assume given a predicate that expresses which
messages are erroneous.

Time : TYPE = real
NonNegTime : TYPE = {t: Time| ¢t > 0}

IMPORTING TimePrim[Time, <, <], ...

Messages : TYPE = {request,data, error}
m,my, my : VAR Messages

Nodes : TYPE = {client, server}
node, nodel,node2 : VAR Nodes

send(node,m) : Events
rec(node, m) : Events

abort : Events

erroneous(m) : bool

7.2. Specify the required service

The service specification expresses that if the client sends an erroneous request,
it receives an error between lower bound L and upper bound U. These time bounds
have been added to be able to investigate the timing relations between components.

99

L,U : Time
ETL : setof[Events] = {E | E = send(client, request) V E = rec(client, error) }

ATL : Assertion =)\ o:Vt: o(send(client, request))(t) A erroneous(request) =
o(rec(client, error)) in [t + L,t + U]

TLSpec : Components = spec(ETL, ATL)

7.3. Specify the communication mechanism

Next, we axiomatize the relation between send, receive, and abort events. Only
two properties of the underlying TCP protocol are needed. First, we specify that a
message sent will be received between certain time bounds, provided no abort event
takes place.

TransDelayL, TransDelayU : NonNegTime

SendRec : AXIOM
o(send(nodel,m))(t) A —o(abort) during [t,t + TransDelayU] =
V(node2 | node2 # nodel) :
o(rec(node2,m)) in [t 4+ TransDelayL, ¢ + TransDelayU]

Moreover, we express that a message is only received if it has been sent between
certain time bounds.

RecSend : AXIOM o(rec(nodel, m))(t) =
Jtp, node2 : node2 # nodel A
to € [t — TransDelayU, ¢t — TransDelayL]A
o(send(node2, m))(to)

The time bounds mentioned here are not present in the TCP protocol, but have
been added to be able to reason about the transmission speed.

7.4. Specify the protocol performed by the nodes

Next, the protocol performed by the nodes is specified. Here we have to specify
the server and the client.

7.4.1. Specify protocol of the server

The server should send an error message between certain time bounds if an
erroneous request is received.

100

ErrL, ErrU : NonNegTime

AS1: Assertion = \o:Vt: o(rec(server, request))(t) A erroneous(request) =
o(send(server, error)) in [t + ErrL, ¢ + ErrU]

The main complication of the protocol is that the server might close the
connection by an abort when it receives too much unwanted data. For the
correctness it is, however, important that this is the only reason for the server to
abort the connection. So when it does an abort, some data must have been received
recently, i.e., between certain time bounds.

AbortL, AbortU : NonNegTime

AS2: Assertion = Ao :Vt: o(abort)(t) =
3t : to € [t — AbortU, ¢ — AbortL]A
o(rec(server, data))(to)

AS : Assertion = AS1 A AS2

ES : setof[Events] = {E | E = rec(server, request) V E = rec(server, data)V
E = send(server, error) V E = abort}

Server : Components = spec(ES, AS)

7.4.2. Specify protocol of the client

To get an insight into the main principles of the protocol, we abstract from the
algorithm of the client that dynamically computes the distance between a request
and subsequent data. It is essential only that there is sufficient time between a
request and subsequent data to allow the error to reach the client. Hence, as a first
attempt, the client has been specified by the following formula.

o(send(client, request))(t) =
—o(send(client, data)) during [t, ¢ + NoDataAfterPeriod]

An attempt to verify this protocol revealed that this assertion is too weak. A
request might be processed very fast (by TCP and server), whereas an old data
message, sent before the request, might be processed very slowly, generating a
disturbing abort. Hence, the specification is modified to include also a period before
the request.

101

NoDataBeforePeriod, NoDataAfterPeriod : NonNegTime

AC : Assertion = X\ o:Vt: o(send(client, request))(t) =
—o(send(client, data)) during [t — NoDataBeforePeriod,
t + NoDataAfterPeriod]

EC : setof[Events] = {E | E = send(client, request)V
E = send(client, data) V E = rec(client, error) }

Client : Components = spec(EC, AC)

7.5. Verification of the protocol

To verify the protocol, we first prove that a client request implies that no abort
occurs in the next D time units, provided certain conditions hold (as explained
below).

ReqgAbort : LEMMA NoDataBeforePeriod > TransDelayU + AbortU A
NoDataAfterPeriod > D — TransDelayL — AbortL A
AS2(0) A AC(0) =
(V t : o(send(client, request))(t) =
-o(abort) during [t,t + D])

Lemma RegAbort requires that NoDataBeforePeriod is greater than the slowest
processed data, i.e., a maximal TCP delay TransDelayU plus the upper bound of
the server on performing an abort, AbortU. Similarly, NoDataAfterPeriod should
be greater than the required upper bound D minus the fastest transmission delay
TransDelayL and the fastest response by the server, AbortL.

For the correctness of the protocol, it is required that no abort is generated during
the maximal time needed to transmit an error, which equals 2 x TransDelayU +
ErrU. Hence, D in the lemma above is replaced by this expression. Moreover, this
expression determines the upper bound U of the service specification. Similarly,
lower bound L is determined by the fastest transmission. This leads to the following
timing constraints which allow us to prove that the assertions of the server and the
client lead to the required specification, as expressed in lemma ATLLem.

TimingConstraints : bool =
L < ErrL + 2 x TransDelayL A
U > ErrU + 2 x TransDelayU A
NoDataBeforePeriod > TransDelayU + AbortU A
NoDataAfterPeriod > ErrU + 2 x TransDelayU — TransDelayL. — AbortL

ATLLem : LEMMA TimingConstraints = Valid(AS A AC = ATL)

102

To apply the parallel composition rule, we first prove that the specifications of
server and client only depend on their alphabet. Further, observe that we do not yet
obtain the alphabet of the service specification, but still have some additional events,
represented by IntEve.

ASEveLem : FACT OnlyDepEve(AS, ES)
ACEveLem : FACT OnlyDepEve(AC, EC)

IntEve : setof[Events] = {E | E = send(client, data)V
E = rec(server, request) V - - -}

TLPar : THEOREM TimingConstraints =
(Client || Server = spec(ETL U IntEve, ATL))

Next, the additional events of IntEve can be removed by the hiding rule,
provided they are different from the other events. This is expressed by the axiom
CommEventsDiffer.

ATLEveLem : FACT OnlyDepEve(ATL, ETL)

CommEventsDiffer : AXIOM send(nodel, m;) # rec(node2, my)A
send(node, m) # abort A - - -

TLCor : THEOREM TimingConstraints =
((Client || Server) — IntEve => TLSpec)

8. CONCLUDING REMARKS

A general framework for the formal specification and mechanical verification
of distributed real-time systems has been presented. It can be considered as an
extension and a modification of mixed frameworks for untimed systems [?~!!].
Alternatives for the semantics and an application to hybrid systems can be found
in [6]. The treatment of parallel composition for components with a local state has
been studied in [7].

The formalism has been applied to a distributed real-time protocol, the Binary
Exponential Backoff Protocol. It has been verified on an abstract level, abstracting
for instance, from the algorithm which is used to compute the distance in time
between the request and subsequent data dynamically. This computation could be
considered in a continuation of this work, where the server and the client can be

103

refined and implemented. (Note that the correctness of the client protocol described
in Section 7 requires R > 1.) A related refinement can be found in the work on a
distributed real-time arbitration protocol, where, first, the protocol is verified on an
abstract level, and next, the nodes are implemented in isolation according to their
specification ['2].

Other applications of our approach to protocol verification in PVS concern part
of the ACCESS.bus protocol ['] and a membership protocol, with a dynamically
changing network and local clocks [!4].

In ['°], an alternative approach has been applied to the specification and
verification of the link layer of the serial bus protocol P1394. Since the informal
specification is based on communicating state machines, this framework has been
formalized in PVS. The intention was to stay close to the informal text, motivated
by the importance of the step from the informal to the formal specification. This is
also a topic of current work on requirements engineering.

ACKNOWLEDGEMENTS

The author is grateful to Koen Holtman for his suggestion to verify the Binary
Exponential Backoff Protocol and to his explanation of context and purpose of the
protocol. Thanks are due to Leendert Pieter van Drimmelen, Arnaud Gouder de
Beauregard, Ronald Marcelis, and Alex Vrijsen for their work on this protocol as an
exercise for their postgraduate course on PVS. Although their verification attempts
were different from the solution presented here, their insights certainly contributed
to the solution presented here.

REFERENCES

1. de Bakker, I. W., Huizing, C., de Roever, W.-P., and Rozenberg, G. (eds.). Proc. REX
Workshop on Real-Time: Theory in Practice, LNCS 600. Springer, Berlin, 1992.

2. Langmaack, H., de Roever, W.-P., and Vytopil, J. (eds.). Formal Techniques in Real-Time
and Fault-Tolerant Systems, LNCS 863. Springer, Berlin, 1994.

3. Fielding,R., Irvine, U., Gettys, J., Mogul,J., Frysryk, H., and Berners-Lee, T. Hypertext
Transfer ~ Protocol - http/1.1. Request for Comments (RFC) 2068,
http://ds.internic.net/ds/rfc-index.html, 1997.

4. Owre, S., Rushby, J., and Shankar, N. PVS: A prototype verification system. In //th
Conf. on Automated Deduction. Lecture Notes in Artificial Intelligence, 607. Springer,
Berlin, 1992, 748-752.

5. Owre, S., Rushby, J., Shankar, N., and von Henke, F. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. IEEE Transactions on Software
Engineering, 1995, 21, 2, 107-125.

6. Hooman, J. Compositional verification of real-time applications. In Proc. COMPOS ’97,
Compositionality — The Significant Difference, LNCS. Springer, Berlin, 1998 (to be
published).

104

7. Hooman, J. Developing proof rules for distributed real-time systems with PVS. In Proc.
the Workshop on Tool Support for System Development and Verification, 1998 (to be
published).

8. Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall, Englewood Cliffs,
N. 7.°1985;

9. Olderog, E.-R. Process theory: Semantics, specification and verification. In Current Trends
in Concurrency, LNCS 224. Springer, Berlin, 1985, 442-509.

10. Olderog, E.-R. Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer
Science, 23. Cambridge University Press, Cambridge, 1991.

11. Zwiers, J. Compositionality, Concurrency and Partial Correctness, LNCS 321. Springer,
Berlin, 1989.

12. Hooman, J. Compositional verification of a distributed real-time arbitration protocol. Real-
Time Systems, 1994, 6, 2, 173-205.

13. Hooman, J. Verifying part of the ACCESS.bus protocol using PVS. In Proc. 15th Conf.
on the Foundations of Software Technology and Theoretical Computer Science, 6, 2.,
LNCS 1026. Springer, Berlin, 1995, 96-110.

14. Hooman, J. Verification of distributed real-time and fault-tolerant protocols. In Algebraic
Methodology and Software Technology (AMAST’97), LNCS 1349. Springer, Berlin,
1997, 261-275.

15. Kiihne, L., Hooman, J., and de Roever, W.-P. Towards mechanical verification of parts
of the IEEE P1394 serial bus. In 2nd International Workshop on Applied Formal
Methods in System Design (Lovrek, 1., ed.). University of Zagreb, Faculty of Electrical
Engineering and Computing, 1997, 73-85.

BINAAR-EKSPONENTSIAALSE TAGASIVOTMISPROTOKOLLI
FORMAALNE VERIFITSEERIMINE

Jozef HOOMAN

On esitatud formalism reaalaja hajussiisteemide spetsifitseerimiseks ja veri-
fitseerimiseks. Automaatse tdestamise hdlbustamiseks on formalism automaat-
toestaja PVS keeles. Projekteerimise vahestaadiume on kirjeldatud segatermide
keeles, milles termideks vdivad olla nii spetsifikatsiooni kui ka programmi
konstruktsioonid. Kompositsioonilised tuletusreeglid voimaldavad verifitseerida
projekteerimissammude korrektsust. T60s on kasutatud paralleelkompositsioo-
nile ja varjamisoperaatorile vastavaid tuletusreegleid. Nende reeglite kasutamist
illustreerib HTTP binaar-eksponentsiaalse tagasivotmisprotokolli formaalne verifit-
seerimine.

105

	b10721022-1998-4-2 no. 2 01.04.1998
	PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES EESTI TEADUSTE AKADEEMIA TOIMETISED
	Untitled

	ENGINEERING TEHNIKATEADUSED
	Chapter
	Chapter
	FOREWORD
	FAST AND EFFICIENT CACHE BEHAVIOUR PREDICTION
	Fig. 1. Update of a concrete fully associative (sub-) cache.
	Fig. 2. Update of an abstract fully associative (sub-) cache.
	Fig. 3. Join for the must analysis
	Fig. 4. Join for the may analysis Fig. 5. Loop transformation.
	Untitled
	Untitled
	Fig. 7. The structure of the analysis
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	. e B LN RN o) e n sa o k i 3 k .. R st 2 v e . Sl P L o o R -y„ä k ai
	Table -1 Categorizations of memory references
	Table 2 The interpretation of the abstract cache states of Fig. 6
	Table 3 Test set of C programs with the number of instructions
	Table 4 The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set associative instruction cache with 16 byte linesize
	Untitled
	VAHEMÄLU TALITLUSE KIIRE JA EFEKTIIVNE PROGNOOSIMINE

	FORMAL VERIFICATION OF THE BINARY EXPONENTIAL BACKOFF PROTOCOL
	Client and server of the HTTP.
	BINAAR-EKSPONENTSIAALSE TAGASIVÕTMISPROTOKOLLI FORMAALNE VERIFITSEERIMINE

	SWITCHES AND JUMPS IN HYBRID ACTION SYSTEMS
	Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and the solid lines continuous evolutions.
	Fig. 2. The control policy for the thermostat.
	UMBERLÜLITUSED JA HÜPPED HÜBRIIDSETES TEGEVUSSÜSTEEMIDES

	ON THE BORDER BETWEEN FUNCTIONAL PROGRAMMING AND PROGRAM SYNTHESIS
	FUNKTSIONAALPROGRAMMEERIMISE JA PROGRAMMIDE SÜNTEESI PIIRIMAIL

	COMBINING COMMUNICATING SEQUENTIAL PROCESSES AND TEMPORAL LOGIC
	SUHTLEVATE JADAPROTSESSIDE JA TEMPORAALLOOGIKA KOOSLUSEST

	DISTRIBUTION OF SOLAR ENERGY OUTPUT IN ESTONIA
	Fig. 1. Block diagram of the simulation model for daily energy yield calculations in a domestic hot water system with stratified water in the storage tank.
	N A 2> AN GA +e i 3 aﬁ en-~'£;aze. P 2
	SESOONNE PÄIKESEENERGIA JAOTUS EESTIS

	NUMERICAL SIMULATION OF THE DISTRIBUTION CHARACTERISTICS OF FINE SOLID PARTICLES IN A HORIZONTAL PIPE
	Fig. 1. Particle mass distribution for the particle size 6 =l7 um.
	Fig. 2. Particle mass distribution for the particle size =32 pm.
	Fig. 3. Schematic diagram of the particle collision (in space).
	Fig. 4. Schematic diagram of the particle collision (in plane).
	Fig. 5. Velqcity of gas and particles in various cross-sections: — gas; particles: m m = X =O, – – – X =2SD, e X =2OOD; W exp. (6 = 32 um, D =35 mm).
	Fig. 7. The particle mass distribution for particles of different sizes at X =2OOD, D=3smm: ... =7 um; 6=17 pm: — calc., W exp. 6 = 32 um: = calc., O exp.
	Fig. 6. Velocity of gas and particles in various cross-sections: — gas at X =2OOD; particles: se= X=o, --- X=25D, m X=2OOD; H exp. (6 = 25um, D =l6 mm).
	Fig. 8. The particle mass distribution in various cross-sections: — gas at X =2OOD; particles: w= X=o; cacac X=25D; = X=2OOD; B exp. (6 = 25 um; D =l6 mm).
	Untitled
	MATEMAATILINE MUDEL PEENFRAKTSIOONILISE TAHKEFAASI LEVIKU KIRJELDAMISEKS TURBULENTSEL VOOLAMISEL HORISONTAALSES ÜMARTORUS
	Untitled

	Illustrations
	Untitled
	Fig. 1. Update of a concrete fully associative (sub-) cache.
	Fig. 2. Update of an abstract fully associative (sub-) cache.
	Fig. 3. Join for the must analysis
	Fig. 4. Join for the may analysis Fig. 5. Loop transformation.
	Untitled
	Untitled
	Fig. 7. The structure of the analysis
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	. e B LN RN o) e n sa o k i 3 k .. R st 2 v e . Sl P L o o R -y„ä k ai
	Client and server of the HTTP.
	Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and the solid lines continuous evolutions.
	Fig. 2. The control policy for the thermostat.
	Fig. 1. Block diagram of the simulation model for daily energy yield calculations in a domestic hot water system with stratified water in the storage tank.
	N A 2> AN GA +e i 3 aﬁ en-~'£;aze. P 2
	Fig. 1. Particle mass distribution for the particle size 6 =l7 um.
	Fig. 2. Particle mass distribution for the particle size =32 pm.
	Fig. 3. Schematic diagram of the particle collision (in space).
	Fig. 4. Schematic diagram of the particle collision (in plane).
	Fig. 5. Velqcity of gas and particles in various cross-sections: — gas; particles: m m = X =O, – – – X =2SD, e X =2OOD; W exp. (6 = 32 um, D =35 mm).
	Fig. 7. The particle mass distribution for particles of different sizes at X =2OOD, D=3smm: ... =7 um; 6=17 pm: — calc., W exp. 6 = 32 um: = calc., O exp.
	Fig. 6. Velocity of gas and particles in various cross-sections: — gas at X =2OOD; particles: se= X=o, --- X=25D, m X=2OOD; H exp. (6 = 25um, D =l6 mm).
	Fig. 8. The particle mass distribution in various cross-sections: — gas at X =2OOD; particles: w= X=o; cacac X=25D; = X=2OOD; B exp. (6 = 25 um; D =l6 mm).
	Untitled
	Untitled

	Tables
	Table -1 Categorizations of memory references
	Table 2 The interpretation of the abstract cache states of Fig. 6
	Table 3 Test set of C programs with the number of instructions
	Table 4 The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set associative instruction cache with 16 byte linesize
	Untitled

