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Abstract. Abstract interpretation is a technique for the static analysis of dynamic properties
of programs. It is semantics based, i.e., it computes approximative properties of the semantics

of programs. On this basis, it allows for the correctness proofs of analyses. It thus replaces
commonly used ad hoc techniques by systematic, provable ones, allowing the automatic

generation ofanalyzers from specifications as in the Program Analyzer Generator PAG.

In this paper, abstract semantics of machine programs, which determines the contents of

caches, is intuitively defined. For interprocedural analysis, existing methods are examined,
and a new approach, tailored specifically for the analysis of hardware with states, is presented.
This allows for a static classification of the cache behaviour of memory references ofprograms.
The calculated information can be used to sharpen the worst case execution time estimations.

It is possible to analyze instruction, data, and combined instruction/data caches for common

(re)placement and to write strategies. The analysis is designed generic with the cache logic as a

parameter. Experimental results, demonstrating the applicability of the analysis, are presented.

Key words: abstract interpretation, program analysis, cache memories, real time applications,
cache behaviour prediction, worst case execution time prediction.

1. REAL-TIME APPLICATIONS AND MODERN HARDWARE

ARCHITECTURES

A real-time system is a system the correctness of which does not only depend
on the logical results, but also on the time at which the results are produced.
In hard real-time systems, it is absolutely imperative that responses occur within

the specified deadlines. Examples of areas where real-time systems are used
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include [!]: process control, nuclear power plants, agile manufacturing, intelligent
vehicle highway systems, avionics, air traffic control, telecommunications (the
information super highway), multimedia, real-time simulation, virtual reality,
medical applications (e.g., telemedicine and intensive care monitoring), and defense

applications (e.g., command, control and communications). The market for real-

time systems and real-time software is huge, and real-time technology is becoming
more and more pervasive, e.g., in a 1997 Opel Omega, 12 microprocessors are

used for various functions, many of them having real-time tasks like anti-locking

system, air bag, and motor control; a Mercedes-Benz-S-Klasse has up to 48

MlCroprocessors.

Typical applications involve many safety critical areas, where a failure of the

system may lead to severe damage and/or loss of life. Such real-time systems
necessitate a timing validation, usually referred to as schedulability analysis or

scheduling analysis. A system is said to be schedulable if it can be shown that

all timing requirements will be met. A real-time system is often structured as a

set of processes with deadlines whereby execution can be distributed over multiple

processors. There exist many results and analysis methods for real-time scheduling,
but these analysis methods require that the Worst Case Execution Time (WCET) of

each task (such as subtask, critical section) is known.

However, the achievements of modern computer architectures [2], like cache

memories and processor pipelines that have made the tremendous performance
increase possible in the recent years, complicate the prediction of sharp WCETs.

The state of a cache depends on the execution history. This means that the

cache behaviour of the execution of a reference to an instruction or data could be

influenced by the instructions that are very far away in the program text, in other

modules, in libraries, or even in other programs, including the operating system.

In the presence of caches, methods to predict the WCET from the execution

time measurements of programs or tasks like software monitoring, the dual loop
benchmark approach, direct execution time measurement with a logic analyzer,
or hardware simulation are not generally applicable as additional instructions to

measure the execution time. It may change the cache behaviour, and the worst case

input that takes the cache behaviour into account is usually not known.

Analysis methods that do not consider the cache are unable to provide tight
WCET estimations for cached systems. Hennessy and Patterson [%] describe typical
values for the first level caches in 1995 workstations: hit time 1-2 clock cycles
(normally 1); miss penalty 8-66 clock cycles. In more modern CPU designs, the

miss penalty can be even higher. The typical worst case assumption is that all

accesses miss the cache. This is an overly pessimistic assumption which leads to a

waste of hardware resources in order to guarantee the meeting of all deadlines. This

is especially undesirable for mass products like embedded systems in automobiles

and mobile phones or systems that require very high computing performance,
where slight additional computing performance requirements can lead to immense

Increases in costs.
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In this paper, we present an analysis method based on the theory of abstract

interpretation, capable of predicting tight bounds on the cache behaviour of typical
programs.

2. OVERVIEW

In the following section, we briefly sketch the underlying theory of abstract

interpretation and present the Program Analyzer Generator PAG.

Cache memories are briefly described in Section 4. Section 5 describes the

semantics for programs that reflects only memory accesses (to fixed addresses) and

their effects on cache memories. We present the must analysis that computes a set

of memory blocks that are always in the cache and the may analysis that computes
a set ofmemory blocks that may be in the cache and describe how the results of the

analyses can be interpreted.
The behaviour of memory references within loops and recursive procedures can

be analyzed with interprocedural analysis methods. Section 6 discusses the existing
approaches and presents anew approach. Section 7 illustrates an example. Section 8

introduces an additional improvement, and Section 9 describes extensions to data

and combined caches.

In Section 10, we present and discuss the results of our practical experiments.

3. PROGRAM ANALYSIS BY ABSTRACT INTERPRETATION

Program analysis is awidely used technique to determine runtime properties of a

givenprogram without actually executing it. Such information is used, for example,
in optimizing compilers [3] to enable code improving transformations.

A program analyzer takes a program as an input and computes some program

properties. Most of the interesting properties are undecidable, though. Hence,
correctness and completeness of the computed information cannot be achieved

together. Program analysis makes no compromise on the correctness side; the

computed information has to be reliable to enable optimizing transformations.

It thus cannot achieve completeness. The quality of the computed information,

usually called its precision, however, should be as good as possible.
There is a well-developed theory of static program analysis called abstract

interpretation [*]. Using this theory, correctness of a program analysis can be

systematically derived. According to this theory, a program analysis is determined

by an abstract semantics.

Usually the meaning of a language is given as functions for the statements of

the language computed over a concrete domain. For such a semantics, an abstract

version consists of a new simpler abstract domain and simpler abstract functions

which define the abstract meaning for every program statement.
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The PAG [°] offers the possibility to generate a program analyzer from a

description of the abstract domain and the abstract semantic functions in two

high level languages, one for the domains and the other for the semantic functions.
Domains can be constructed inductively, starting from simple domains using

operators like constructing power sets and function domains. The semantic

functions are described in a functional language, which combines high

expressiveness with efficient implementation. Additionally, the user has to supply
a join function, combining two domain values into one. This function is applied
whenever a point in the programhas two (or more) possible execution predecessors.

4. CACHE MEMORIES

A cache can be characterized by three major parameters:

— capacity — the number of bytes it may contain

— line size (also called block size) — the number of contiguous bytes transferred

from memory on a cache miss. The cache can hold at most n =

capacity/line size blocks

— associativity — the number of cache locations, where a particular block may
reside

n/associativity — the number of sets of a cache

If a block can reside in any cache location, then the cache is called fully
associative. If a block can reside in exactly one location, then it is called direct

mapped. If a block can reside in exactly A locations, then the cache is called A-way
set associative. The fully associative and the directmapped caches are special cases

of the A-way set associative cache, where A = n and A = 1, respectively.
In the case of an associative cache, a cache line has to be selected for

replacement when the cache is full and the processor requests further data. This

is done according to a replacement strategy. Common strategies are Least Recently
Used (LRU), First In First Out, and random.

The set where a memory block may reside in the cache is uniquely determined

by the address of the memory block, i.e., the behaviour of the sets is independent
of each other. The behaviour of an A-way set associative cache is completely
described by the behaviour of its n/A fully associative sets. This holds also for

direct mapped caches, where A = 1.

For the sake of space, we restrict our description to the semantics of fully
associative caches with theLRU replacement strategy. More complete descriptions
that explicitly describe direct mapped and A-way set associative caches can be

found in [°—B].
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5. CACHE SEMANTICS

In the following, we consider a (fully associative) cache as a set of cache lines

L = {1j,...,1,}, and the store as a set of memory blocks S = {sl,...,sn}.
To indicate the absence of any memory block in a cache line, we introduce a new

element I; S’ = SU {l}.

Definition 1 (concrete cache state).
A (concrete) cache state is a function ¢ : L — S'.

C. denotes the set ofall concrete cache states.

If ¢(l;) = s, for a concrete cache state ¢, then z describes the relative age of

the memory block according to the LRU replacement strategy and not the physical
position in the cache hardware.

The update function describes the side effect on the cache of referencing the

memory. The LRU replacement strategy is modeled by putting the most recently
referenced memory block in the first position /. If the referenced memory block

sz 18 in the cache already, then all memory blocks in the cache that have been more

recently used than s, increase their relative age by one, i.e., they are shifted by one

position to the next cache line. If the memory block s, is not in the cache already,
then all memory blocks in the cache are shifted and the ‘oldest’, i.e., least recently
used memory block is removed from the cache.

Definition 2 (cache update). A cache update functionU : C. x S — C, describes

the new cache state for a given cache state and a referenced memory block.

Updates of fully associative caches with the LRU replacement strategy are

modeled as in Fig. 1.

Fig. 1. Update of a concrete fully associative (sub-) cache.
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5.1. Control flowrepresentation

Werepresent programs by the control flow graphs consisting of nodes and typed
edges. The nodes represent basic blocks. A basic block is a sequence (of fragments)
of instructions in which the control flow enters at the beginning and leaves at the end

without halt or possibility of branching, except at the end. For our cache analysis, it
is most convenient to have one memory reference per control flow node. Therefore,
our nodes may represent the different fragments of machine instructions that access

memory. For non-precisely determined addresses of data references, one can use a

set of possibly referenced memory blocks. We assume that for each basic block, the

sequence of references to memory is known (appropriate for instruction caches and

can be too restricted for data caches and combined caches; weaker restrictions are

described in [%?]). This means that there exists a mapping from control flow nodes

to sequences of memory blocks: £ : V' — S*.

We can describe the working of a cache with the help of the update
function U. Therefore, we extend Uto the sequences of memory references:

Uc, (8215 »8z,)) =U(... (U(c,82,))-- . ,5z,)
The cache state for a path (ki,...,kp) in the control flow graph is given

by applying U to the initial cache state c; that maps all cache lines to I

and the concatenation of all sequences of memory references along the path:
Uler, L(ky). ... .L(kp)).

5.2. Abstract semantics

The domain of our abstract interpretation consists of abstract cache states.

Definition 3 (abstract cache state). An abstract cache state ¢ : L — 25 maps

cache lines to sets of memory blocks. ¢ denotes the set ofall abstract cache states.

We will present two analyses. The must analysis determines a set of memory

blocks that are in the cache at a given program point upon any execution. The may

analysis determines all memory blocks that may be in the cache at a given program

point. The latter analysis is used to guarantee the absence of a memory block in the

cache.

The analyses are used to compute a categorization for each memory reference

that describes its cache behaviour. The categories are described in Table 1.

Theabstract semantic functions describe the effects of acontrol flow node on an

element of the abstract domain. The abstract cache update function I for abstract

cache states is acanonical extension of the cache update function Uto abstract cache

states.

To combine the information from different paths through the control flow graph
to a node, join functions are used. They combine the abstract cache states on all

control flow nodes with at least two predecessors. Ourjoin functions are associative.

On nodes with more than two predecessors, the join function is used iteratively.
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Definition 4 (join function). A join function J : C x C ~ C combines two

abstract cache states.

5.3. Must analysis

To determine ifa memory block is definitely in the cache, we use abstract cache

states, where the positions of the memory blocks in the abstract cache state are

upperbounds of the ages of the memory blocks. é(l;) = {5y,...,5.} means the

memory blocks 5y,... ,s, are in the cache. 5,,...,5, will stay in the cache at

least for the next n — x references to memory blocks that are not in the cache or

are older than sy, ... ,s,, whereby s, is older than s, means: 3lx, y : 5, € ¢(l2),
sp € ¢(ly), z > y. We use the abstract cache update function depicted in Fig. 2.

The join function is similar to the set intersection. A memory block only stays
in the abstract cache if it is in both operand abstract cache states. It gets the oldest

age if it has two different ages (see Fig. 3).
The solution of the must analysis computed by the PAG-generated analyzers is

interpreted as follows. Let ¢ be an abstract cache state at a control flow node k that

Fig. 2. Update of an abstract fully associative (sub-) cache.

Category | Abbr. | Meaning

always hit ah the memory reference will always result in a cache hit

always miss am the memory reference will always result in a cache miss

not classified nc the memory reference could neither be classified as ah nor am

Table -1

Categorizationsof memory references
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references a memory block s;. If s, € ¢(l,) for a cache line[, then s; is definitely
in the cache. A reference to s, is categorized as always hit (ah).

5.4. May analysis

To determine, if a memory block s, is never in the cache, we compute the set

of all memory blocks that may be in the cache. We use abstract cache states where

the positions of the memory blocks in the abstract cache state are lower bounds of

the ages of the memory blocks. ¢(l;) = {5y,...,5,} means the memory blocks

5y,... ,S; may be in the cache. A memory block s,, € {5y,...,5,} will be

removed from the cache after at most n — z + 1 references to memory blocks that

are not in the cache or are older or the same age than 5,,, if there are no memory

references to 5,,. S, is older or of the same age as sp, i.e.: 3z, 1y : 54 € E(lg), sp €

Õ(ly)a T 2 Y.

We use the following join function: the join function is similar to the set union.

If a memory block s has two different ages in the two abstract cache states, then the

join function takes the youngest age (see Fig. 4).
The solution of the may analysis computed by the PAG-generated analyzers is

interpreted as follows. Let ¢ be an abstract cache state at a control flow node k that

references a memory block s,. If s, is not in ¢(l,) for an arbitrary I, then it is

definitely not in the cache. A reference to s, is categorized as always miss (am).

5.5. Termination of the analysis

There is only a finite number of cache lines and for each program, a finite

number of memory blocks. This means the domain of abstract cache states

Fig. 3. Join for the must analysis
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¢: L— 2% is finite. Hence, every ascending chain is finite. Additionally, the

abstract cache update functions ¢ and the join functions [ are monotone. This

guarantees that our analysis will terminate.

6. ANALYSIS OF LOOPS AND RECURSIVE PROCEDURES

Loops and recursive procedures are of special interest, since programs spend
most of their runtime there.

A loop often iterates more than once. Since the execution of the loop body
usually changes the cache contents, it is useful to distinguish the first iteration from

others.

For our analysis of cache behaviour, we treat loops as procedures to be able to

use existing methods for interprocedural analysis (see Fig. 5).

Fig. 4. Join for the may analysis

Fig. 5. Loop transformation.
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In the presence of (recursive) procedures, a memory reference can be executed

in different execution contexts. An execution context corresponds to a path in the

call graph of the program.
The interprocedural analysis methods differ in which execution contexts are

distinguished for a memory reference within a procedure. Thecallstring approach
is widely used ['9].

The applicability of this approach to the cache behaviour prediction is limited

"
To obtain more precise results for the cache behaviour prediction, we have

developed the VIVU approach, which has been implemented with the mapping
mechanism of PAG as described in [°]. A detailed description of the mapping
mechanism of PAG and the VIVU approach can be found in ['!]. Paths through
the call graph that only differ in the number of repeated passes through a cycle are

not distinguished. It can be compared with a combination of virtual inlining of all

non-recursive procedures and virtual unrolling of the first iterations of all recursive

procedures including loops.
The results of the callstring(o), callstring(l), and the VIVU approach are

compared in Section 10.

7. EXAMPLE

We consider must and may analyses for a fully associative data cache of 4 lines

for the following program fragment of a loop, where ..z.. stands for a construct that

references variable z:

while ..e.. do ..b..;..c..;..4..;..d..;..c. end

The control flow graph and the result of the analyses with VIVU are shown in

Fig. 6. Here, the analyses with callstring(l) yield the same results. We assume that

each variable fits exactly into one cache line. The nodes of the control flow graph
are numbered 1 to 6, and each node is marked with the variable it accesses. For

the analysis, we assume the loop has been implicitly transformed into a procedure
according to Fig. 6 (see Table 2 too).

Each node is marked with the abstract cache states computed by the PAG-

generated analyzer immediately before the abstract cache states are updated
according to the memory references. The loop entry edge is marked with the

incoming abstract cache states. The loop exit edge is marked with the outgoing
abstract cache states.

8. HEURISTICS TO BOUND THE NUMBER OFMISSES

For memory references that can neither be classified as always hit nor as always
miss, one can use asimple heuristics to determinea safe upperbound on the number

of cache misses.
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Fig. 6. Must and may analysis for a fully associative data cache with the VIVU: must and may

are the abstract cache states for the must and the may analysis, must; and may; are the abstract

cache states for the first loop iteration, must, and may, are the abstract cache states for all other

iterations (see also Table 2).

Node, variable l First iteration l Other iterations

(1,e), (2, b) always hit always miss

(3, c) always miss always hit

(4, a), (5, d) always miss always miss

(6, c) always hit always hit

Table 2

The interpretation of the abstract cache states ofFig. 6
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For each memory reference classified as nc, we compute the set of competing
memory blocks, i.e., the memory blocks that are in the same fully associative set

in the abstract cache state of the may analysis. For instance, if the competing
memory blocks reside in less than A (= level of associativity) memory blocks, then

all references to the memory block in the given context will result in at most one

cache miss. Generally, an upper bound for cache misses of the references to the

memory block is given by one plus the maximal number of possible sequences of

length A of references to pairwise disjoint competing memory blocks. To determine

this bound is a nontrivial problem. We use simple heuristics described in [®] to

compute a safe approximation to the upper bound.

9. DATA CACHES AND COMBINED CACHES

In [?], methods are described to statically determine the addresses of memory

references to procedure parameters or local variables by a static stack level

simulation [3]. This allows for the use of our analysis to predict the behaviour of

data caches or combined instruction/data caches for programs that use only scalar

variables. Methods to handle writes to caches for common cache organizations
(write through and write back with write allocate or no write allocate) as well as

write buffers are described in [®].
An analysis allowing for the determination of the persistence of memory blocks

in the cache is presented in [l?]. In [®], the persistence analysis to the sets of possibly
referenced memory locations, e.g., arrays is generalized. This generalization
determines memory locations that survive in the cache, thus providing effective

and efficient means to compute an upper bound of the number of possible cache

misses. Furthermore, it is examined how data dependence analysis and program

restructuring methods to increase data locality can be used to determine the worst

case bounds on the number of cache misses.

10. PRACTICAL EXPERIMENTS

For reasons of simplicity, we restrict our practical experiments to the analysis
of instruction caches.

The cache analysis techniques are implemented in the PAG-generated analyzer
that gets the control flow graph of a program and an instruction cache description
as an input and produces a categorization cat of the instruction/context pairs of the

input program. A context represents the execution stack, i.e., the function calls and

loops along the corresponding path in the control flow graph to the instruction. It

is represented as a sequence of first and recursive function calls (call_ff, call£.)
and first and other executions of loops (Zoop|/p loop_l0) for the functions f and

(virtually) transformed loops / of a program. For callstring(l), the sequence has a
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maximal length of one. For callstring(o), the sequence is empty. INST is the set

of all instructions inst in a program. CONTEXTis the set of all execution contexts

context of a program. /C is the set of all instruction/context pairs ic.

CONTEXT = {call_fy,call_f,,loop_l;,loop_L,}*
IC = |INST x CONTEXT

cat : IC — {ah,am, nc}

The frontend to the analyzer reads a Sun SPARC executable in a.out format.

The Sun SPARC is a RISC architecture with pipelined instruction execution. It has

a uniform instruction size of four bytes. Our implementation is based on the EEL

library of the Wisconsin Architectural Research Tool Set (WARTS).
The objective of our work is to improve the WCET estimation of programs on

computer systems with caches. Besides the architecture, the execution time of a

program depends on the program path, i.e., the sequence of instructions that are

executed. But the program path is usually dependent on the program input and

cannot generally be determined in advance. Therefore, the program path analysis
is part of the WCET analysis. For example, with the help of user annotations, like

maximal iteration counts of loops, an architecture dependent worst case execution

profile can be determined that gives a conservative approximation to the worst case

execution path.
The worst case execution profile allows us to compute how

often each instruction/context pair is maximally encountered. Combined with the

categorizations of our cache analysis, the overall number of cache hits and cache

misses can be estimated (see Fig. 7).

Fig. 7. The structure of the analysis
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In our experiments, we have circumvented the program path analysis problem
and combine the categorizations cat with “exact” execution profiles instead of worst

case execution profiles (see Fig. 7). This allows us to assess the effectiveness

of our analysis without the influence of possibly pessimistic path analyses. The

profilers that produce the profiles are produced with the help of qpt2 (Quick program

Profiler and Tracer) that is part of the WARTS distribution. A profiler for a

program computes an execution profile profile, i.e., the execution counts for the

instruction/context pairs:

profile : IC —Ny

For the experiments, we use parts of the program suites of Frank Miiller,
the djpeg program of Yau-Tsun Steven Li, and some additional programs (see
Table 3). For some programs, there exist worst case inputs, so that our execution

profiles are the worst case execution profiles. The programs are compiled with the

GNU C compiler version 2.7.2 under SunOS 4.1.4 with -02, and (if applicable) the

FDLIBM (Freely Distributable LIBM) library of SunPro version 5.2.

The programs fft, stats and Iloops use arithmetic library functions.

These functions are more or less structured into the treatment of special cases,

normalization, computation, and final rounding. Not all parts are necessarily
executed when the function is called. This uncertain execution path typically leads

to relatively many occurrences of NC in our categorizations.
The executable of 11oops consists of more than 100 loops that are often

deeply nested. This program structure leads to a very high number of distinguished
execution contexts with the VIVU approach.

The AVL tree, as implemented inavl2, is a height-balanced binary tree. Every
insert ordelete operation may lead to a series of recursivecalls for re-balancing. The

matmult 50 x 50 matrix multiplication 154
ndes* data encryption 471

matsum? 100x 100 matrix summation 135
dhry Dhrystone integer benchmark 447

stats two arrays sum, mean, variance, standard deviation, 456

and linear correlation

fEft fast Fourier transformation 1810

djpeg JPEG decompression 1760

lloops Livemore loops in C 5677
avl2 inserts and deletes 1000 elements inan AVL tree 614

Table 3

Test set of C programs with the number of instructions
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code of the insert and delete operations consists of many cases for the different re-

balancing operations called rotations. Such a program structure seems to be rather

typical for the handling of many dynamicdata structures.

Table 4 shows the distribution of ah, am, and nc in the categorizations for
the test programs for callstring(o), callstring(l), and VIVU for one selected cache

configuration. The sum of ah, am, and nc in the categorizations is the number
of distinguished instruction/context pairs. It is a measure for the complexity of

the analysis. In our current implementation, the categorization for a given cache

configuration can be computed within seconds on a SUN SPARCstation 20 for most

of our test programs, but the computation for 1 loops with VIVU requires about 7

minutes. In our implementation, there is room for improvements, though.
To give a more expressive presentation of the results of our experiments than

bounds on cache hit ratios, we assume an idealized virtual hardware that executes all

the instructions that result in an instruction cache hit in one cycle and all instructions

that result in an instruction cache miss in 10.

The cache behaviour of the test programs for different cache configurations is

computed by simulating the cache for the program trace. The cache simulation

always starts with the empty cache, and we assume uninterrupted execution. For

technical reasons, instructions in functions from dynamic link libraries (in our case,

the calls to IO routines and timers) are not traced and their effects on the cache are

thereforeignored. From the number of hits and misses in the trace, we compute the

execution time ETof our idealized virtual hardware.

Callstring(0) Callstring(1) VIVU

Name

lb=[=]=]= =]~

matmult 113 15 26 168 25 21 406 40 0

ndes 339 14 118 734 36 131 1407 123 39

matsum 99 18 18 139 25 13 212 35 0

dhry 297 30 120 427 39 140 798 145 136

stats 311 16 129 612 26 213 1109 126 197

fft 1233 145 432 ° 2212 239 629 19261 1206 5536

djpeg 1225 39 496 = 2297 188 497 65190 6421 5596

lloops 3928 22 1727 26750 7099 3470 585994 54221 48156

avl2 377 39 198 1112 123 400 2949 287 1290

Table 4

The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set

associative instruction cache with 16 byte linesize
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With our categorization and heuristics, an upper and a lower bound of the

execution time can be computed by combining the profiles with the results of our

analyses. Anupper bound of the execution time is given if we count all instructions

in the profile as misses that cannot be determined from the categorization as cache

hits. A lower bound of the execution time is given if we count all instructions in the

profile as hits that cannot be determined from the categorization as cache misses.

The upper and lower bounds of the test programs for various cache configurations
are shown in Fig. 8 in percentage of the execution time ET.

Figure 8 can be interpreted as follows:

— The VIVU approach generally leads to the most precise predictions.

— Conditionally executed code, e.g., as found in the arithmetic library functions

or in avl2, can lead to less precise predictions which result from many nc

in the categorizations.

— There can be a wide variation of the quality of the prediction, depending on

the cache configuration.

— For all test programs, our method (especially with VIVU) gives much better

results than naive methods which count all memory references as misses for

a WCET estimation and as hits for a BCET estimation.

11. CONCLUSIONS

We have described semantics-based analysis methods by abstract interpretation
that allow for the prediction of the intrinsic behaviour of programs for various

types of one level caches and processor pipelines. The cache analyzers have been

implemented. The applicability of our methods has been shown with the results of

our practical experiments. Our approach has many advantages:

— The theory of abstract interpretation supports correctness proofs for the

analysis and provides efficient implementation methods.

— The cache analyzers are generated by the PAG from very concise

specifications.

— It is possible totrade time for precision, but even with the VIVU approach,
our implementation of the analyses is quite fast.

— The newly developed VIVU approach makes it possible to predict the cache

behaviour within tight bounds for many programs and cache configurations.

— We directly analyze executables, and there are no special compilers or linkers

required.
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— Our current implementation supports the SPARC architecture. Other

architectures can be supported by supplying additional front ends to our

analyzers.

— No special input of a skilled user is required to tune for acceptable results.

This makes it feasible to use our analyses in an automatic schedulability
analysis.

— The cache and the pipeline analysis can be naturally integrated [©].

— The analyses are extensible to accommodate further cache designs like

multilevel caches, wrap around line fill or pseudo associative caches.
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VAHEMÄLU TALITLUSE KIIRE JA EFEKTIIVNE PROGNOOSIMINE

Christian FERDINAND jaReinhard WILHELM

Abstraktne interpreteerimine on programmide diinaamiliste omaduste seman-

tikal pohinev staatilise analiiiisi tehnika. Interpreteerimisel arvutatakse program-
mide semantikat aproksimeerivad omadused, mille alusel saab omakorda toestada

analiitisi tulemuste korrektsust. Kirjeldatud ldhenemine voimaldab asendada tild-

kasutatavad ad hoc meetodid uute, siisteemselt toestatud meetoditega ja automaat-

selt genereerida spetsifikatsioonidest analiisaatoreid nii nagu programmi analiisaa-

tori generaatoris PAG.

Artiklis on defineeritud programmide intuitiivne semantika, mis voimaldab

määrata vahemilu sisu, vaadeldud protseduuridevahelise analiilisi meetodeid ja
esitatud uus riistvara olekute analiilisi meetod, mis staatiliselt klassifitseerib

programmi madluviitade kditumise vahemilus. Sel teel saadud informatsiooni on

kasutatud programmi tditmisaja halvima hinnangu tdpsustamiseks ning késu ja/voi
andmete vahemilu asendamis- jakirjutamisstrateegia analiiiisiks. Analiitisimeetodi

rakendatavust on demonstreeritud eksperimentaaltulemuste abil.
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