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Abstract. Using a special model for the closure of the driving equations of the dispersed phase, the

behaviour offine solid particles in the two-phase turbulent flow in a horizontal pipe is investigated.
The model is based on inter-particle collisions, since the dispersed phase is considered here as a

polydispersed phase. The pseudo-viscosity coefficients are introduced in the driving equations of

the dispersed phase, which allows for the description of an additional diffusive transfer of mass,

momentum and angular momentum in the equations of the particles. Along with the inter-particle
collisions, the Saffman and the Magnus lift forces are taken into account. All these factors together
yield the distribution of mass concentration across the pipe, which is similar to our experimental
observations.

Key words: inter-particle collision, pseudo-viscosity coefficients, distribution of mass

concentration.

1. INTRODUCTION

In practice, we often encounter particulate two-phase turbulent flows, e.g.,

pneumatic conveying, cyclone separators, and transport of pulverized coal in

power plants. The confinement may considerably influence the motion of the

dispersed phase by inter-particle collisions, particle-wall collisions, and lift

forces. Our experimental studies of the two-phase flows with solid particles have

shown that the dispersed phase moves with the velocity lag (particles lag behind

the gas) when conveying rough particles. However, the velocity lag disappears
when fine particles are conveyed. At the same time, the particles in the

horizontal pipe are distributed either with increasing mass concentration towards

the pipe axis or with a growth in mass concentration towards the wall, depending
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on their size ["*]. Many experiments have described the two-phase turbulent

vertical pipe [**] and channel flow [°] to eliminate the asymmetry in two-phase
flows. Unfortunately, insufficient attention has been paid to the motion and

distribution characteristics of fine particles discovered and described in o
This investigation focuses on the motion of fine particles in a horizontal pipe

to describe the variety of the distribution of particle mass concentration across

the pipe ['*]. The goal is to develop a mathematical model describing the

distribution characteristics of fine particles. The model is characterized by the

implementation of inter-particle collisions for the closure of the driving
equations ofthe dispersed phase.

The mathematical simulation of two-phase turbulent flows has been

performed by the Lagrangian [%"] or the Eulerian method [*°]. The latterrequires
closure models for both phases. The authors of [*] closed the equations of the

dispersed phase within the equilibrium approach, suggesting the transport
equation for the kinetic energy of particles, using the theory of rapid granular
flows ['°], where the effect of inter-particle collisions dominates the turbulent

diffusion of particles. On the other hand, using the inter-particle collisions, the

authors of [’] suggested the driving equations for each component of the stress

tensor of both phases (non-equilibrium approach for the closure). Unlike the

differential closure models in [*’], which require establishing the boundary
conditions for each component of the stress tensor, our closure model is an

algebraic closure model free from the problems above. This model suggests an

introduction of the pseudo-viscosity coefficients in the transport equations of the

dispersed phase. These pseudo-viscosity coefficients are obtained analytically,
using the mechanism of the binary collision of particles. This model allows for

the description of the distribution characteristics in a horizontal pipe.

2. MATHEMATICAL MODEL AND EQUATIONS

Mathematical modelling is carried out within the Eulerian method for the

dispersed phase, while this phase itself is considered as a multi-velocity
continuum ['']. The interaction of solid particles with the gaseous phase is

described by the viscous drag force. In addition, the Magnus and the Saffman lift

forces are taken into account. Other force factors are negligible since the ratio of

particle density to the that of gas is large. We neglect the influence of the

gravitational force since the settling velocity of fine particles is by a factor of

10-10% lower than particle velocity, caused by inter-particle collisions or the

Saffman force. For this reason, an axisymmetrical two-phase flow in a horizontal

pipe is considered.

The internal friction in the dispersed phase is caused by inter-particle
collisions. The real manufactured powders used in our experiments are

polydispersed with up to 30% dispersion of the particle size.
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The distribution of particle mass versus particle size for powders with the

weighted mean particle size 6 =l7 and 32 pm are shown in Figs. 1 and 2,

respectively. In order to simplify the description of the motion in the poly-
dispersed phase, we introduce three particle fractions in the composition of the

dispersed phase, i.e., we consider the transport of three particle fractions: the

main particle fraction with large mass contribution (index 2) and two additional

particle fractions with small mass contributions (indices 1 and 3). Such a

dispersed phase is characterized by the following quantities: the particle size of

the fractions &, <&, <d;; the velocity components in the streamwise and

transversal directions u,, v, U,,, V,,, Ug, Vg, respectively; the angular

particle velocities w,;, ®,,, ®,;, and the particle mass concentration of three

particle fractions «,, «,, @;. The particle diameters of additional particle

fractions (1, 3) were found 90 and 110% of the particle diameter of the main

fraction, respectively. Furthermore, 50% of the mass contribution was equally
distributed between two additional particle fractions (1) and (3), while the

remaining 50% of the mass contribution was related to the main particle fraction

(2).

The driving equations for the gaseous and dispersed phases were written,
using the approximation of the turbulent boundary layer, where the turbulent

transfer in the transverse direction is much stronger than in the direction of the

main flow. For the closure of the driving equations in the gaseous phase, the

k—& turbulence model is used, taking into account the influence of the wall.

This influence is expressed in the introduction of the wall functions into the

equations of the turbulent energy, and the rate of its dissipation is based on ['*].
The driving equations for each particle fraction are expressed as

Fig. 1. Particle mass distribution for the particle
size 6 =l7 um.

Fig. 2. Particle mass distribution for the

particle size =32 pm.
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Here v is the kinematic viscosity of gas; p, p
,

are the densities of gas and solid

particle material, respectively; Q; = %—wsi is the angular velocity slip;
r

Cpi =1 +0.278-,/Repi
+0.01388-Re

,;
is the deviation of the drag coefficient

from the Stokes friction ['*], Re,; = \/(u =¥, ) +(v-v,; yO, /v is the Reynolds

number of the particle. The function f (Repi, Rem.) is determined from ['*] as

follows:

Re,,; Re,; Re,,;
fRepi-Rey;)J=| 1-0.23434—2 lexp| -— |+0.23434—2 (Re,<4o, (5)

: Re,,; 10 Re,;

f.(ReiRey )=o.o37lRey; (Re,, >4O), (6)

52
where the Reynolds number from the shear rate is Re,,; = 4—"31! .Vv |or

This function characterizes the influence of the particle of Reynolds number

Re
,

and the rotational Reynolds number Re,, in the formulae for the Saffman

force D, v.., vf,-, vš,- are the introduced pseudo-viscosity coefficients. The

eguations are those of the particle mass conservation (1), the momentum transfer
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in the axial (2) and radial (3) directions, and the angular momentum transfer (4)
of the particles.

We used the eddy-viscosity concept for the closure of the driving equations in

the dispersed phase and introduced the pseudo-viscosity coefficients. The

expressions for the second moments of the linear velocity components in the

dispersed phase were taken from [’], and the Fick’s law was used to obtain the

expression for the correlation of the mass concentration and the particle velocity
fluctuations. We also determined the second moment for the angular velocity of

the particle in the gradient form like in [°]. Thus, we obtained the following
expressions:

(“;i";'): ~Vg žš'“ , (7)

— (8)
2X V- avsi

+ sti
,<vsi >_ T

s

d 3

(w;iv.’vi> =-vy —B% »
(9)

W(afvii)=-Dy >
(10)

where u;, vi;, @, o are the linear and angular fluctuating velocities of

particles and the fluctuation of the mass concentration in the i-th particle

fraction, respectively; v.,vZ,v2 and k, are the pseudo-viscosity coefficients

and the coefficient of the kinetic energy exchange of the particles during
collision.

The boundary conditions are written while particles slide along the wall (w):

da:
Ugil, =Valtsil,» vsil, =o> @4, =Yo@sl,» ®Vsl, =Dsi “o-%l ,» > (11])

w

where the coefficients 7y,,7, characterize the losses of linear and angular

momentum of particles. They are determined by the friction coefficient

. . 2+sk
k, according to ['°], since Yu =-5-% and Yw =—7—'-.

3. PSEUDO-VISCOSITY COEFFICIENTS

To define the pseudo-viscosity coefficients, let us assume that there are only
binary particle collisions. Taking into account the restitution coefficients k,,
and ky, ['°], the velocity differences of the linear and angular components before

and after collision are
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where e is the unity vector determined by the two angles ¢, 6 and the space

parameter y like in ['°]; V;, V, are the vectors of total velocity of particles 1

and 2 before their collision, respectively, their absolute values are determined as

V, = ,/uf, +v3 and V, = ,/ufz +v2; 0,, O, are the vectors of angular velocity

of particles 1 and 2 before their collision; the prime characterizes these values

after collision.

The variables 8,, and RB,, are defined as p,, =m,/(m +m,) and

B, =m, [(m; +m,), where m;, m, are the masses of colliding particles. The

parameter egual to 0.4 for a spherical particle is £ =4-1,/m;õ7, where I, is the

particle’s rotary inertia. A schematic picture of the particle collision in a space
and in a plane is shown in Figs. 3 and 4, respectively.

The velocity differences (Eqgs. (12)—(15)) are considered here as the

fluctuating velocities of a particle. To obtain the stress tensor components, let us

multiply the different components of the fluctuating velocities and average the

product over the two angles ¢, 6 and the space parameter y. We have then

((‘421 —“sz)(".:zl ~Vs2 » <(V;2I s )2> (((0;21 —wSZ)(v;ZI — Vs 2 ))
<(u;2l —Ugy )2> + <(v;2l -V )?>, etc. The averaging procedure is expressed as
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7

xdx]

Fig. 3. Schematic diagram of the particle collision (in space).

Fig. 4. Schematic diagram of the particle collision (in plane).
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The averaging shows that the stress tensor components depend strongly on

the angle ¢;;, determined as

b N VoV

¢; =larctg| =t——L|[ |l+ —L

Usi uv "n”g

The pseudo-viscosity coefficients result from multiplying the stress tensor

components by the time of inter-particle collisions Az, which is determined

through the probability of particle collisions, like in ['"]. The probability of

collision is determined in the simplest case of the binary collision of particles

according to ['*] as

7r(si+sj)2 (17)Pij=z'—li2—,
where /; is the inter-particle distance for the i-th particle fraction, determined by

the particle mass concentration ¢; as /; =6; 3,/7rp/(6pp@;) .

The time of inter-

particle collisions Ar is determined by equalizing the probability of collision

(17) to the probability of collision obtained in [''] as follows:

at — A (18)
n-(õ,— +õj)2nj|V]- —Vil

where n; is the volumetric numerical concentration of the j-th particle fraction

and ‘VjT V,-l is the velocity difference at the time of the particle collision.

Dropping the manipulations and using the formulae

V.:i = <(u'w — Usi )(V's„ — Vsi ))A’ ;

vž= <(v_:,.j -V )2 >At;
vy = < (w.:‘ij — W )(v;ijT))At;

Dy =| (lsy = )(b 3 =va¥) |a
the pseudo-viscosity coefficients for threeparticle fractions are

3 2

vk =

S B
si =BO jš„—%/Z

(Vi +Vj )õJX'IJC : (19)
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To obtain the coefficient k;, we multiply the square of the fluctuating

velocity difference <(u:u —Usi)z>+<(v;,—j —vl„—)2>l to the probability of the
0.2.9

particle collision (17) as follows:

3

ksi = ZBJZ':' (Vi +Vj)2Pinij, (20)
jAL jei

T

where the indices are i, j=1,2,3; k=1,2,34 and g, =3\/——6—pi; the coefficients
p

X,’j and Y; are defined in the Appendix.

The pseudo-viscosity coefficients (19) and the coefficient k; are entered on

the right-hand side of the driving equations in the diffusive terms (Eqgs. (1)—(4))
and the formulae ((7)-(10)). Here the properties of the flow are taken into

account by the help of the linear and angular particle velocities, mass

concentration, the relaxation parameters of the particles, including the particle
material density and particle size and the collision coefficients, including the two

restitution coefficients.

4. RESULTS AND DISCUSSION

The numerical calculations were conducted for a horizontal pipe and

compared with the experimental data of [“’] in the cross-section 200D
downstream (here D is the pipe diameter) at the outlet of the flow. The

distribution of the gas velocity and the velocity of the dispersed phase
determined as U, = (oqu) + @yt5 + 01t5)/(04 +oty +023) are presented in the

dimensionless form, like U, (r)/U(0) in various cross-sections (X =0; 25D;

200D) in Figs. 5 and 6. Here U(0) is the gas velocity at the axis of the pipe. The

electrocorundum particles with the material density pp
=3950 kg/m3 and with

sizes 6 =7, 17 and 32 um and with mass loading of 0.34 kg dust/kg air are used

in a stainless steel pipe (D =35 mm), and the particles with the size é =23um

and with mass loading of 0.62 kg dust/kg air are used in a smaller pipe
(D = 16 mm). The outflow velocity (velocity over the cross-section of the pipe)
was 50 m/s in both cases, then the Reynolds numbers are Re=u-D/v =ll6 760

and 53 300, respectively. The distribution of the mass concentration of the

dispersed phase determined as a=o,+a,+o; is presented in the

dimensionless form like o(r)/e(0) in various cross-sections in Figs. 7 and 8.

Here o(0) is the particle mass concentration at the axis of the pipe.
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We started our calculations when initial particle velocity was 10% of the gas

velocity (dashed lines in Figs. 5 and 6) in order to trace the development of the

particle velocity and mass concentration along the whole pipe length, including
its non-steady sections. From the non-steady sections, where the particles speed

up to the region of the fully developed steady flow, the distribution of mass

concentration transforms from the uniform distribution at the inlet to the non-

uniform distribution with the growth in mass concentration towards the axis of

the pipe at the outlet, passing the intermediate distribution with a wave-like

profile (dotted line in Fig. 8). The analysis of the flow parameters shows that the

Fig. 5. Velqcity of gas and particles in various

cross-sections: — gas; particles: m m = X=O,
- --

X =2SD, e X =2OOD; W exp. (6 = 32 um,

D =35 mm).

Fig. 7. The particle mass distribution for

particles of different sizes at X =2OOD,

D=3smm:
...

=7 um; 6=17 pm: —

calc., W exp. 6 = 32 um: = calc., O exp.

Fig. 6. Velocity of gas and particles in various

cross-sections: — gas at X =2OOD; particles:

se=
X=o, --- X=25D, mX=2OOD; H

exp. (6 = 25um, D =l6 mm).

Fig. 8. The particle mass distribution in various

cross-sections: — gas at X =2OOD; particles:
w= X=o; cacac X=25D; = X=2OOD; B

exp. (6 = 25 um; D =l6 mm).
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distribution of mass concentration depends on the value of the Stokes number,
2

determined as St, =-š—%Re*[—ž—] ,
where Re, is the Reynolds number

KUD

. v.D
calculated by the friction velocity of gas v, as Re, =—2—V— .

If the Stokes number

St, <l, the particle mass concentration increases towards the wall for very fine

particles 6=7 um and for fine particles 6 =l7 um (dotted and solid lines,

respectively, in Fig. 7). Otherwise, if I<St, <3, then the growth of particle mass

concentration towards the axis of the pipe for particles 6 =32 um is observed

(bold line in the same figure). As shown, fine particles are distributed with a steep

growth in the mass concentration towards the wall. If I<St, <3, a non-uniform

distribution of mass concentration of the particles 6 =23 um with the growth
towards the axis of the pipe can be seen for a narrow pipe D = 16 mm (bold line in

Fig. 8). Ournumerical calculations show that the Saffman force is significant in the

vicinity of the wall. This factor and the inter-particle collisions yield the given
distributions of the concentration (solid line in Fig. 7 and bold lines in Figs. 7 and

8), which is in good agreement with the experimental data ['].
A similar tendency in the formation of the particle mass concentration in

horizontal channels and pipes was observed in [']. Unlike the above

investigations, in [’] the authors used the Lagrangian approach to study the

motion of solid (glass) particles in a rectangular horizontal channel and in a

round pipe. They came to the conclusion that the inter-particle collisions should

be taken into account in the modelling of such two-phase flows. The authors also

showed the importance of the influence of wall roughness on the formation of

particle concentration. The particles 6 =4O um were used in the calculations in

the pipe D = 80 mm when the mean flow velocity was 10.7 m/s. Neglecting both

the inter-particle collisions and wall roughness in the numerical simulation of the

motion of glass particles in a smooth glass pipe resulted in particle accumulation

at the bottom of the wall due to gravity [']. Otherwise, if the above factors were

taken into account, the distribution of mass concentration in stainless steel,
considered as a rough pipe, would be axisymmetrical with the maximum

concentration at the axis of the pipe [']. This is in agreement with our results.

The Reynolds number was 57 000 in ["], close to our flow conditions.

5. CONCLUSIONS

The given mathematical model describes a non-slip velocity motion of the

dispersed phase with fine solid particles accompanied by a variety of profiles of

particle mass concentration in a horizontal pipe. The Stokes number is a criterial

parameter which allows one to describe the distribution characteristics of mass
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concentration across the pipe. Such particle motion results from the combined

influence of inter-particle collisions and lift forces. The elaborated closure model

of the driving equations in the dispersed phase is an algebraic model. In this

model, the pseudo-viscosity coefficients are introduced, allowing the properties
of the two-phase flow to be taken into account in the calculations.
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APPENDIX

COEFFICIENTS X; AND Y

x} ={g [(4; -C; )sin2y, -B, cos2y, |+ g,R; (D, cos 2y, F; sin2y,)

+g3R; [ sin 2Y; [G„. -T] +Hjj cos2y;|t, (A1

2.— { ( » 2 :

2 )Xi =1844A; +Bl 2A; sin” Y; —B sin2y; — Cj; cos2y;

+ gZRij(DU sin 2'}" + F;j COS 2y,) |

+ g;Ri; [g,.j (I+cos* y;) - Gy cos2y; + Hi sin 27,.]}, (A2

X,š = {B5 (Lij + M jtgy;) +g6Ry (Njjtgy; — O;) + 87R;(ij _Ejtgyl')}’ (A3

X =BsAj +B9R;Oj» (A4

A;
Yij=gB_!"+g9Ri;2" (A5

Q;

Here X,'j‘ = X f,- (i=l,3; j=l,3; i#j) and the pseudo-viscosity diffusion

coefficient D; = v:',-. Thecoefficients g; are determined as

2 2
I(a+b (2a +3b)b b" 1(a-b

=
22) =DD =g4= 1 e s A~ b81 2[ 2) 82

15
83

16
84 3[ 2] 8s (a )

2 25 2 1 a+b 2 2 3b
=—blSa+7b =B, =—||——| +a”" +b°

|,
=—,86 4(a )» 87 88 3[[ 2) a JB9 16

and other coefficients are
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2 .

a -
by Bl SPi (A6
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V.
I+__j_. 2 2(pÜ

1—k cos* —[Vi ]
2

P 2
M; =

i
1/l—k,-j [l—]'—l——l;s—], (Al4

I—Vf sin @;;
. V:p;;

I+-L
Vi

. 2(pij
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Al6
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The total velocity, incomplete elliptic integrals of the first and the second type
and the modulus of integrals are
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respectively. In an asymptotic approximation for small angles ¢ << 1, the

expressions for the coefficients A;, B;, C;, Dy, Fy;, Gy, Hy;, L, M;;, Ny,

0,-j, P, T,-j, Q,-j are transformed as

-7
Aj =ta (A2l)
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V.

|l+7'l
R=2 vi’ (A32
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V.
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1-Ž
Vi

1
—. A3447 (A34

MATEMAATILINE MUDEL PEENFRAKTSIOONILISE TAHKEFAASI

LEVIKU KIRJELDAMISEKS TURBULENTSEL VOOLAMISEL

HORISONTAALSES ÜMARTORUS

Aleksander KARTUSINSKI

Kasutades tahkefaasi iilekandevorrandite sulgemiseks spetsiaalselt vilja-
tootatud teoreetilist mudelit, mis pohineb tahkete osakeste faasisiseste porke-
protsesside arvestamisel, on viikeste osakeste (8/D< 10‘3) puhul arvmodelleeri-

tud kahefaasilist (gaas—tahked osakesed) voolust horisontaalses iimartorus.

Edasikandevorrandite sulgemisel on vaadeldud tahkefaasi poliidisperssena ning
vorranditesse on sisse viidud tahkefaasi pseudoviskoossuse koefitsiendid.

Osakeste porkeprotsesside ja tousujoudude arvestamine vodimaldab tdpsemalt
mddrata erineva suurusega osakeste jaotust kanali ristldikes. Arvmodelleerimise

tulemused on rahuldavas kooskdlas eksperimendist saadud tahkefaasi kiirus- ja
kontsentratsioonijaotusega.
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