
Proc. Estonian Acad. Sci. Engng., 1998, 4,2, 130-137

130

COMBINING COMMUNICATING SEQUENTIAL
PROCESSES AND TEMPORAL LOGIC

Justin PEARSON and Jeremy BRYANS

¢ Department ofInformation Technology, Mid Sweden University of Science & Engineering,
MSU-ITE, S-851 70 Sundsvall, Sweden; e-mail: justin@nts.mh.se

b Computing Laboratory, University of Kent, Canterbury, Kent, CT 2 7NF, United Kingdom;
e-mail: J.W.Bryans@ukc.ac.uk

Received 19 January 1998, in revised form 23 February 1998

Abstract. This work presents a novel method for specifying real-time processes. The

contribution is threefold: we present a novel denotational model for the process algebra of

communicating sequential processes (CSP); we show how to interpret a real-time temporal
logic over this model; finally, we develop a theory of refinement which encompasses processes
and temporal specifications. This allows us to separately develop and refine the timed and the

behavioural aspects of specifications, and combine the two into a timed CSP process at the end

of the development.

Key words: real-time CSP, temporal logic, specification, refinement.

1. INTRODUCTION

In this paper, we illustrate a novel method for the specification of real-

time processes. Our framework employs the process algebra of communicating
sequential processes (CSP) [l] for the specification of the behavioural aspects of

a system and the propositional temporal logic (PTL) [?] for the specification of its

temporal properties. We can separately develop and refine these two aspects, and

then combine them into a real-time CSP process at the end of the development.
Underpinning this work is a new denotational model My for real-time CSP,

discussed in Section 2, that allows unguarded CSP processes as specifications. In

Section 3, the temporal logic PTL is presented and interpreted over the CSP model

My,and thus the model My is a common semantic framework for both aspects of

the development process. In Section 4, we give a definition of what it means for a

https://doi.org/10.3176/eng.1998.2.05

https://doi.org/10.3176/eng.1998.2.05

131

process to satisfy a PTL formula and present a number of rules for determining if a

particular process satisfies a particular formula.

We then consider a specification to be a pair (P, ¢), where P is a CSP process
and ¢ is aformula of temporal logic. In Section 5, we develop a theory of refinement

based on this idea.

2. THE CSP MODEL

The syntax used in this paper is presented below. It is largely similar to most

other timed CSP models [®]. The significant differences are: first, we include a

second prefix operator (), and secondly, to simplify the presentation, we do not

include message passing or variables.

If P is a process, ? is a time value (¢ € [O, 00)), A is a set of events, a is a single
event and / is an index set, then the syntax used in this paper is

P::= 1 | Stop | Skip | Wait(t) | P|[A]|P| PO P|
M,Pla=PlamP|P; P|Po{t}P|P\A

These represent: the most nondeterministic process, L; the broken process,

Stop; successful termination, Skip; delay, Wait(t); parallel composition, P |[A]| P;
external choice, P O P; nondeterministic (or internal) choice, f—liel

P; first form of

action prefix, a — P; second form of action prefix, a — P; sequential composition,
P ; P;timeout, P >{t} P and hiding, P \A.

We will develop a framework where a specifier may use an untimed CSP (the
language above, with the exclusion of the wait, timeout and second action prefix
operators) to describe the behaviour of the system. The first action prefix operator
(a — P) says nothing about the timing of its arguments, while the second (a — P)
insists that the action a must be available immediately and that the process P

is invoked immediately subsequent to the action a being performed. Thus, the

operator +— takes the role of the standard real-time CSP action prefix, while the

process a — P nondeterministically allows arbitrary delays before the action a is

offered, and between the action a being performed and the process P being invoked.

2.1. The semantic model

A denotational semantic model identifies a process with the set of all

observations that may be made of it. These sets are subject to certain consistency
conditions, similar to those outlined in [*]. These insist, for example, that a set

containing a particular observation must also contain all prefixes of that observation.

The novelty of the model My lies in the fact that it allows processes of the form

P = a — P, where there need be no delay between recursive instantiations of P.

132

We assume a set of actions ¥ and use these to build timed actions: pairs of the

form (t,a), where t is a time value and a € X.

An observation within the model My, is a triple, (s, X, d), where s is a timed

trace, X is a timed refusal, and d is a divergence value.

A timed trace is a chronologically ordered sequence of timed actions and may
be finite or infinite. A timedrefusal is a set of timed actions. A divergence value is

a non-negative real number or the symbol 00.

If an observation (s, X, d) is part of the semantic set of a process P, then we say
that the P can perform the observation (s, X, d). This means that itmay perform the

timed actions indicated by the trace s, while refusing to perform the timed actions

in the set X. If d is a real number, then the process was observed to have diverged
by the time d, and if d is the symbol 00, then no divergence was observed.

We define an information ordering over observations, such that any observation

of a process may be extended. This may be done in two possible ways.
An observation is an extension of another observation if it contains the same

trace, and more complete refusal or divergence information, if it has an extended

trace. Formally:

Definition 1. An observation (s',X’',d") is an extension ofan observation (s, X, d),
written (s', X', d') 2 (s,X,d) if

s<S AXCX ANd>d if dis finite, otherwise d > end(s,X,d),

where end(s, X, d) denotes the largest time value in the observation, and s < s

stipulates that the traces is a prefix of the trace s'.

Observations which contain complete information for every point in time, up to

the end of the observation, are called point-wise maximal observations.

Formally:

Definition 2. (s, X, d) is point-wise maximal in [[P]| whenever

v(s,X,d) € [P].(¢,X,d) 2 (s,X,d) =

(¢X .d) =X4
V

end(s',X',d') > end(s, X, d)

3. PROPOSITIONAL TEMPORAL LOGIC

In this section, we introduce the logic, PTL [2], which will be used for temporal
specifications. Our version of PTL has three classes of atomic propositions. The

atom P, expresses the fact that a process does the action a, O, that the action a

133

is offered, and D that the process has diverged. The logic is defined in terms of

a satisfaction relation |=, between observations and formulae of the logic. The

expression (s,X,d) F: ¢ asserts that the formula ¢ holds on the observation

(s,X,d) at time s.

We define |=; fort> end(s, X, d) as

° (S, Xa d) bét (p

and for ¢ < end(s, X, d), we define |, inductively as follows. For atoms:

e (5,X,d) = D wheneverd < t;

e (5,X,d) = P, whenever (t,a) € s;

e (s5,X,d) = O, whenever (t,a) ¢X.

So the assertion (s, X, d) |=; P, asserts that the action a is actually performed at

time ¢. Note that we use negative information to characterize offers. We say that an

observation (s, X, d) offers an a at time ¢ if it does not refuse it.

o (5,X,d) =1 ¢ A 9 whenever (s,X,d) = ¢ and (s, X, d) = ;

o (5,X,d) = — ¢ whenever (s,X,d) W ¢;

o (5,X,d) E+ ¢ U <9 whenever

3 (finite)t, : t; > tand |t —1 |[< T ®

(s,X,d) =, ¥ and

Vig:t <t < 11 (5,X,d) =l, ¢;

o (5,X,d) =1 ¢ S <1 whenever

dy:fy<tand |t—f |<Te

(s,X,d) Hn ¢and

Via 1) <t <t(s,X,d) =, Y.

The logic also includes the next state and previous state operators, but these are

omitted due to lack of space.
The other operators can be derived in the usual way: ¢ V 1) is defined as

-(= A-1); ¢= lisdefined as YV= ¢; O ¢ is defined as true U ¢and

O«¢ is defined as = O,(—).
To define what it means for a process to satisfy a PTL formula, we make use

of the > ordering on observations, and of maximal refusal sets (a refusal set is a

maximal refusal set if it contains all possible refusal information up to the time of

the end of the trace.)

Definition 3. A process P satisfies ¢ if for all observations (s, X, d) ofprocess P,
whereX is a maximal refusal set, we have that either (s, X,d) =0 ¢or3(s', X', d') €

FulP].(s',X',d") 2 (s,X,d) e (s, X', d') Fo £.

134

4. RULES FOR FINITE PROCESSES

In this section, we present a representative subset of rules for finite processes

(processes which are constructed without recursion), which connect the process
constructors with the rules of the logic. Eachrule has the form |

antecedent

conclusion

which reads that the antecedent implies the conclusion. Rules with no antecedent

read that the conclusion is always true.

The Stop process simply refuses all actions for all time. Therefore we have a

family of rules

Stop = O(=0,)

for each possible action a.

The semantics of the binary internal choice P M Q is simply the union of the

behaviours of the two processes. This makes therule for internal choice particularly
simple:

PE¢ QFY
PNQE ¢V

The behaviours of P O Q is a subset of the union of the behaviours ofP and Q,
and so we have the following rule:

PE¢ QF¢
POQF¢

In the semantics of the immediate prefix process a — P, the process is able

to offer an a and when it performs the a, it acts as P. But such a process need not

actually perform the action a if placed in an uncooperative environment. This leads

to the following rule:

ol . .

av—)P|=OaU<oo(P„=>d>)

The skipprocess simply offers the tick action v, until it is performed

Skip = Oy U <ooPy

The process P : Q will behave as P until P offers a v' action, at which time it

will behave as process Q. The effect of the compose operator is that the v* action

becomes urgent and hidden. This leads to the rule

135

PE¢ QFY PEtuelU .0/

P; Q':¢U<T"/)

with the extra side condition that ¢ does not contain P, or O, as subformulae.

The rule for the timeout operator is

PE¢ OFY

Po{}OF¢U <l9
with the side condition that the process formula ¢ must contain no subformulae of

the form ¢’ U 49’ with? > t.

For hiding, we have the following rule:

PE¢
P\AFE 6/ (Aues ~(0a V Py)

provided Va € A- 0,, P, are not subformulae of ¢.
The rules presented here are not complete with respect to the CSP model — not

everything expressible in CSP is expressible in the logic. This is not a problem for

us, since we intend that particular requirements be captured in the most appropriate
formalism.

S. SPECIFICATION AND REFINEMENT

In this section, we define the notion of a process specification pair. This gives
a way of combining two specification styles: CSP refinement and specification
by temporal logic formulae. We can then deal with separate aspects of a

design separately, by capturing the behaviour using CSP processes and the timing
information using PTL.

Broadly, a process specification pair (P, ¢) is the set of all behaviours of P which

satisfy the formula ¢ subject to certain consistency conditions. This leads to the

following definition:

Definition 4. A process specification pair is a pair (P, $) consisting of a CSP

process and a PTLformula. It is defined in terms ofobservations as

(P,¢) = {(s,X,d) € [P] |
3 pointwise —maximal observation(s',X',d') e

(s, X', d') 2 (5,X,d) A (s, X', d) =¢ A

V(s", X", d") > (¢, X', d")withX" maximal

(S”,X",d”) l= ¢},

where (s',X',d') and (s",X" ,d") are observations ofP.

136

It is important to realize that this pair may not define a legitimate process. If

therequirements set by the CSP specification and the PTL formula are inconsistent,
then the specification pair will contain observations which cannot be extended in

time. These correspond to time-stop requirements — requirements which cannot be

implemented.
We now define the standard notation of semantic entailment for formulae of the

logic.

Definition 5. A temporal formula 1) follows from a temporal logic formula ¢
(written p)if VXX E¢=X E ¢.

Given two specifications (P, ¢) and (Q, 1), we can define a refinement notion

exactly analogous with the standard CSP refinement.

Definition 6. (P, ¢) is refined by (Q,) (written (P,¢) C (Q,)) whenever

(@, %) C (P, ¢).

We are now able to present our general refinement theorem.

Theorem.

PEQ vryg

(P,6)L(0,Y)

Proof. Consider (s,X,d) € (Q,v). We know (s,X,d) € [P]. But since ¢ - ¢, we

know that (s, X, d) = ¢ (or some extension does), therefore (s, X,d) € (P, ¢).

6. CONCLUSION

In this paper, we have developed a novel framework of refinement, based

on separately specifying behavioural and timing requirements. Each type of

requirement is specified, using an appropriate language: CSP for behavioural

requirements, and PTL for timing requirements. We have given rules to decide

when processes and temporal logic formulae are compatible, and a general
refinement theorem forprocess specification pairs.

REFERENCES

1. Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall, Englewood Cliffs,
N. J., 1985.

2. Emerson, E. A. Temporal and modal logic. In Handbook ofTheoretical Computer Science

(Leeuwen, J. van, ed.). Elsevier Science Publishers, Amsterdam, 1990.

3. Davies, J. Specification and proof in real time CSP. Cambridge University Press,
Cambridge, 1993.

4. Bryans, J. W. Denotational Semantic Models for Real-time LOTOS. PhD thesis. Reading
University, UK, Nov. 1996.

137

SUHTLEVATE JADAPROTSESSIDE JA TEMPORAALLOOGIKA

KOOSLUSEST

Justin PEARSON ja Jeremy BRYANS

On esitatud wuudne reaalajaprotsesside spetsifitseerimise =~ meetod

késitledes protsessialgebra suhtlevate jadaprotsesside uut denotatsioonmudelit,
reaalaja temporaalloogika interpreteerimist sellel mudelil ning protsesside
ja nende spetsifikatsioonide tdpsustamise tdiendatud teooriat. Meetod vodimal-

dab eraldi kirjeldada ja konkretiseerida spetsifikatsioonide talitluslikke ja ajalisi
aspekte ning arendussammude jdrel need taas kokku sulatada ajaga suhtlevateks

jadaprotsessideks.

	b10721022-1998-4-2 no. 2 01.04.1998
	PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES EESTI TEADUSTE AKADEEMIA TOIMETISED
	Untitled

	ENGINEERING TEHNIKATEADUSED
	Chapter
	Chapter
	FOREWORD
	FAST AND EFFICIENT CACHE BEHAVIOUR PREDICTION
	Fig. 1. Update of a concrete fully associative (sub-) cache.
	Fig. 2. Update of an abstract fully associative (sub-) cache.
	Fig. 3. Join for the must analysis
	Fig. 4. Join for the may analysis Fig. 5. Loop transformation.
	Untitled
	Untitled
	Fig. 7. The structure of the analysis
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	. e B LN RN o) e n sa o k i 3 k .. R st 2 v e . Sl P L o o R -y„ä k ai
	Table -1 Categorizations of memory references
	Table 2 The interpretation of the abstract cache states of Fig. 6
	Table 3 Test set of C programs with the number of instructions
	Table 4 The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set associative instruction cache with 16 byte linesize
	Untitled
	VAHEMÄLU TALITLUSE KIIRE JA EFEKTIIVNE PROGNOOSIMINE

	FORMAL VERIFICATION OF THE BINARY EXPONENTIAL BACKOFF PROTOCOL
	Client and server of the HTTP.
	BINAAR-EKSPONENTSIAALSE TAGASIVÕTMISPROTOKOLLI FORMAALNE VERIFITSEERIMINE

	SWITCHES AND JUMPS IN HYBRID ACTION SYSTEMS
	Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and the solid lines continuous evolutions.
	Fig. 2. The control policy for the thermostat.
	UMBERLÜLITUSED JA HÜPPED HÜBRIIDSETES TEGEVUSSÜSTEEMIDES

	ON THE BORDER BETWEEN FUNCTIONAL PROGRAMMING AND PROGRAM SYNTHESIS
	FUNKTSIONAALPROGRAMMEERIMISE JA PROGRAMMIDE SÜNTEESI PIIRIMAIL

	COMBINING COMMUNICATING SEQUENTIAL PROCESSES AND TEMPORAL LOGIC
	SUHTLEVATE JADAPROTSESSIDE JA TEMPORAALLOOGIKA KOOSLUSEST

	DISTRIBUTION OF SOLAR ENERGY OUTPUT IN ESTONIA
	Fig. 1. Block diagram of the simulation model for daily energy yield calculations in a domestic hot water system with stratified water in the storage tank.
	N A 2> AN GA +e i 3 aﬁ en-~'£;aze. P 2
	SESOONNE PÄIKESEENERGIA JAOTUS EESTIS

	NUMERICAL SIMULATION OF THE DISTRIBUTION CHARACTERISTICS OF FINE SOLID PARTICLES IN A HORIZONTAL PIPE
	Fig. 1. Particle mass distribution for the particle size 6 =l7 um.
	Fig. 2. Particle mass distribution for the particle size =32 pm.
	Fig. 3. Schematic diagram of the particle collision (in space).
	Fig. 4. Schematic diagram of the particle collision (in plane).
	Fig. 5. Velqcity of gas and particles in various cross-sections: — gas; particles: m m = X =O, – – – X =2SD, e X =2OOD; W exp. (6 = 32 um, D =35 mm).
	Fig. 7. The particle mass distribution for particles of different sizes at X =2OOD, D=3smm: ... =7 um; 6=17 pm: — calc., W exp. 6 = 32 um: = calc., O exp.
	Fig. 6. Velocity of gas and particles in various cross-sections: — gas at X =2OOD; particles: se= X=o, --- X=25D, m X=2OOD; H exp. (6 = 25um, D =l6 mm).
	Fig. 8. The particle mass distribution in various cross-sections: — gas at X =2OOD; particles: w= X=o; cacac X=25D; = X=2OOD; B exp. (6 = 25 um; D =l6 mm).
	Untitled
	MATEMAATILINE MUDEL PEENFRAKTSIOONILISE TAHKEFAASI LEVIKU KIRJELDAMISEKS TURBULENTSEL VOOLAMISEL HORISONTAALSES ÜMARTORUS
	Untitled

	Illustrations
	Untitled
	Fig. 1. Update of a concrete fully associative (sub-) cache.
	Fig. 2. Update of an abstract fully associative (sub-) cache.
	Fig. 3. Join for the must analysis
	Fig. 4. Join for the may analysis Fig. 5. Loop transformation.
	Untitled
	Untitled
	Fig. 7. The structure of the analysis
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	. e B LN RN o) e n sa o k i 3 k .. R st 2 v e . Sl P L o o R -y„ä k ai
	Client and server of the HTTP.
	Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and the solid lines continuous evolutions.
	Fig. 2. The control policy for the thermostat.
	Fig. 1. Block diagram of the simulation model for daily energy yield calculations in a domestic hot water system with stratified water in the storage tank.
	N A 2> AN GA +e i 3 aﬁ en-~'£;aze. P 2
	Fig. 1. Particle mass distribution for the particle size 6 =l7 um.
	Fig. 2. Particle mass distribution for the particle size =32 pm.
	Fig. 3. Schematic diagram of the particle collision (in space).
	Fig. 4. Schematic diagram of the particle collision (in plane).
	Fig. 5. Velqcity of gas and particles in various cross-sections: — gas; particles: m m = X =O, – – – X =2SD, e X =2OOD; W exp. (6 = 32 um, D =35 mm).
	Fig. 7. The particle mass distribution for particles of different sizes at X =2OOD, D=3smm: ... =7 um; 6=17 pm: — calc., W exp. 6 = 32 um: = calc., O exp.
	Fig. 6. Velocity of gas and particles in various cross-sections: — gas at X =2OOD; particles: se= X=o, --- X=25D, m X=2OOD; H exp. (6 = 25um, D =l6 mm).
	Fig. 8. The particle mass distribution in various cross-sections: — gas at X =2OOD; particles: w= X=o; cacac X=25D; = X=2OOD; B exp. (6 = 25 um; D =l6 mm).
	Untitled
	Untitled

	Tables
	Table -1 Categorizations of memory references
	Table 2 The interpretation of the abstract cache states of Fig. 6
	Table 3 Test set of C programs with the number of instructions
	Table 4 The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set associative instruction cache with 16 byte linesize
	Untitled

