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Abstract. The importanceof compositionality in program construction is being accepted quite well.

In this respect, relational programming has clear advantages over functional programming.
Unfortunately, there is no general technique of relational programming efficient enough to compete

with the existing functional programming techniques. Here we discuss structural synthesis of

programs — a method of synthesis of functional programs explainable in terms of higher-order
functional constraint nets, simple types or intuitionistic logic. This method has been used in the

implementationof declarative languages that allow us to specify concepts as relations and use them

in specifications more flexibly than functions.
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1. STRUCTURAL SYNTHESIS OF PROGRAMS

Structural synthesis of programs (SSP), known for a number of years, has been

used at least in two commercial systems: XpertPriz and PRIZ [']. It has been

applied and extended in several ways. Here we summarize the recent extensions

and refer to [%] for some earlier extensions.

SSP is a deductive program synthesis method based on the idea that we can

construct programs taking into account only their structural properties. We use this

idea for constructing programs from small as well as large modules whose

behaviour we do not describe in detail. Each preprogrammed module is supplied
with a specification used as an axiom, stating under which conditions it can be

applied and which values it computes. However, the specification does not specify
the relation between the input and output values. Instead of the general form of a
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program module specification Vx.(P(x) — 3y.R(x,y)) with precondition P and

postcondition R, we use Vx.(P(x) — 3Jy.R(y)), which tells us that a correct value

(satisfying R) can be computed, but does not show the relation between this value

and the input. The latter formula has the following equivalent form 3x .P(x) —

Jy.R(y). As a consequence, we can present axioms in a propositional language,

considering the closed formulae dx.P(x) and dy.R(y) as propositions whose

internal structure is inessential. This allows us to use logic in which we are able to

handle theories (specifications for the synthesis of programs) with large amount

(up to tens of thousands) of axioms.

The SSP uses an implicative fragment of the intuitionistic propositional
calculus (IPC) with restricted nestedness of implications. Intuitionistic logic

guarantees simplicity of program extraction from proofs: programs are

realizations of formulae and can be represented in typed lambda calculus. The

general form of formulae is

(U->V)->(X->Y)),

where, for any symbol W, W denotes W&W,&...&W, or an empty formula.

Propositional letters U, V, X, Y denote computability of objects. Hence, an

implication X — Y has the following meaning “y is computable if x, x, ..., X,
are computable”, where y, x|, x, ..., X, are the variables whose computability is

denoted by the propositions Y, X, X,, ..., X,,,. An implication of this form can be

either a specification of a preprogrammed module (i.e., an axiom) or a goal
specifying the program which has to be synthesized.

The nested implications U — V in the formula (U—> V) — (X > Y) are

called subtasks, and they provide the required generality to the language. They
play the same role in composing an algorithm as atoms do in the body of a Prolog
clause — they state subgoals to be achieved for applying an axiom (a clause in

Prolog). Program development based on SSP is sometimes called propositional
logic programming, because first, it is a kind of logic programming and, second, it

uses a propositional logic [*].
The fragment of IPC used in SSP is still expressive enough for deductively

equivalent encoding of arbitrary IPC formulae [*]. The derivability problem in IPC

is PSPACE complete, consequently, the proof-search in SSP in general is

PSPACE complete, but efficient algorithms exist for practical cases with less

complexity [*].

2. SEMANTICS OF SPECIFICATIONS IN NUT

It is inconvenient to use the logical language of SSP directly for writing
specifications for program synthesis. Instead, this language has been applied for

representing semantics of several high-level specification languages [']. One of

these is the NUT specification language considered here.
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The NUT specification language is an object-oriented language extended with

features for program synthesis. A class is specified as a collection of declarations

of the following form:

Superclass declaration

super C — Cisaclass

Component declaration

var A : C — A is anew component, Cis a class

Method declaration

rel R : <axiom> <program> - R is anew method name

Equivalence declaration

rel A = B — A, B are components

Equation declaration

rel E 1 =E2 — El, E 2 are arithmetic expressions

Here we give examples of classes set, subset exists and

intersection written in the NUT specification language. The keywords num

and bool denote built-in classes for primitive data types, and the keyword any

denotes a universal class which has to be narrowed to a known class before the

synthesis starts. The programs which are realizations of methods are presented
here by their names get, f and g.

class set

var

val : any;

sel : num;

elem : num;

rel

val & sel -> elem (get) %this relations produces elements of

%the set one by one for properly given
%values of the selector sel.

class subset

var

of : set;

is : set;

cond : bool;

rel

(of.sel -> cond) -> (of.val -> is.val) (f)
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class exists

var

res : bool;

in : set;

cond : bool;
rel

(in.sel -> cond) -> (in.val -> resb) (g)

class intersection

var

A : set;

B : set;

res : set;

P : exists;

O : subset;

rel

B = P.in; A = O0.0f; P.res = O.cond; res = 0.155;
r : A.val & B.val -> res.val (spec)

Any class C in NUT can be used as a specification for synthesis of a program
which realizes a goal of the form

A&..&8 — D,

where A, B, ...,
D are propositions stating the computability of components of the

class C. The synthesis succeeds if the goal can be derived from the axioms of the

class specification. An example of the goal for synthesis is in the last line of the

class intersection:

r : A.val š B.val -> res.val (spec)

The keyword spec denotes that the realization of the axiom has tobe

synthesized, using other axioms of the class.

The following is a brief presentation of the logical semantics of specifications
in NUT developed by Uustalu [s]. This semantics is given in a first-order

language, where an important role belongs to classifying predicates telling to

which class an object belongs. Each class C has an associated classifying
predicate, which we denote by the classname itself so that C(w) states “an object w

belongs to the class C”. We denote a subtask by S. Underlining in the first formula

denotes a union, in other formulae a conjunction as before. The semantic function

Sem for translating specifications into the set of (first-order) axioms is defined as

follows.

Sem(class C : D)=, Vw.C(w) > Sem’(D, w)

—semantics of a class is a set of axioms obtained as a union of axioms of its

declarations.
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Sem(super C, w )=,C(w)

— axioms of a superclass are taken without changes.

Sem’(var A : C, w)=;C(w.A)

— a component A of an object w obtains the name w.A and keeps the class C given
in its declaration.

Sem{rel R : S X -> Y <program>, w )=; Sem”(S,w) >Sem (X ->Y,w)

— semantics of a method declaration is given by its axiom.

Sem (U -> V, w)=; computable(w.U) —> computable(w.V)

—semantics of a simple implication is a statement about computability of the

object on its right side if the objects on its left side are computable.

Sem’(rel X = Y, w)=4wX =w.Y

— equality of components is encoded in the proper way.

An equation can be considered as an abbreviation for denoting the methods

which are solving functions of the equation. Therefore, the semantics of an

equation is expressible as the set of axioms for these methods. More precisely,
semantics of an equation E; = E,, which binds the variables x, x,,..., x; and can

be uniquely solved for the variables x, x,,..., x,,,, m < k, is the following:

Sem’(E; = E)) =y &..x; _1&x; 1&...x; > X

with an axiom for every x;, i = 1,..., m.

Inferencerules for transforming specifications into the language of SSP are the

following (notation [x] denotes an occurrence of x in the respective formula, ?, £l,

1, are terms):

Vw.C(w)=D[w] C[t]

Df[t]

h=b R[tl] t=b R[tz]
R[lZ] R[tl]

The proof-search is organized in such a way that these rules are applied only at

the beginning of a proof. This results in unfolding of the set of axioms so that

axioms instantiated for each object are explicitly included into the unfolded

theory. After unfolding of the set of axioms, one can work in the propositional
language of SSP.
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3. SEMANTICS OFPRODUCTION RULES

Attempts have been made to extend the restricted logic of NUT by introducing
production rules. Semantics of rules in NUT has been recently investigated in L
The general form of a production rule in NUT is

rule Pi&...&P, -> Q&...&0Q, (P -> O inthe abbreviated form),

where P;, Q;are atoms of the form

T : C Al = T1,...,An = Tn,

denoting that an object T belongs to the class C and its components Al, . . ~
An

are bound by the equivalences A 1 = T1,...,An = Tn. (T is an object
variable, Tl,

...,Tn may be constants or object variables beginning with the

symbol X.)

Example:

rule

na:Point 6£ ®b:Point -> xc:Bar p = ®a, g = "b

Semantics of rules is given by means of a function Rsem, which translates the

rules into geometrical clauses in intuitionistic logic — into the first-order formulae

of the form Vw. (F —> G), where F and G are built of atomic formulae using only
conjunction, disjunction, falsity constant, and the existential quantifier [7].

Rsem(rule P -> Q)=, Vw.(K(P)) ->32.K(Q))

KT:CA=T )= CDH&TA=T

the variables w appear in P, z appears in Q and notin P; 7, T" are object terms

(i.e., a variable denoting an object or a composite name with such a variable in it).
In geometric theories, only atomic formulae play a critical role, and they can be

handled by natural deduction rules in a certain simple form. The extra inference

rule needed for the rules part of NUT is the following admissible inference rule of

the geometric logic:

O[t z']

Yw.P[w] >Olw,z] Pi[2] R['z]
Rlt]

where z” are fresh variables, and notation [x] denotes occurrence of xin

respective formulae.
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4. ANNOTATIONS OF AXIOMS

In order to specify building blocks of synthesized programs more precisely
than the SSP language permits, one should use a richer language for annotating
axioms. These annotations can be used both for verification of synthesized
programs and for guidance of the proofs-search in order to avoid incorrect

solutions. Tammet has proved correctness of some set manipulation programs "y
using first-order annotations of axioms of SSP. The idea of annotations can be

explained on the following simple example. Let us have the following three

axioms with realizations and annotations

Xx->y (Ax.f) Vx .f(x) = sin(x)
Xx->Z (Ax. g) Vx g(x) = cos(x)

y&z->w (Ayz. h) Vyz.h(y,2) = ylz

If the goal is to construct a program forcomputing 7g(x), then these axioms can

be used for verifying that the program

Ax. h(f(x), g(x)),

obtained by means of the SSP, performs this task correctly. The complete
specification of the result of the synthesis includes the derived formula (goal) and

the annotation:

x —>w (Ax. h(f(x),g(x))) Vx.h(f(x),g(x)) = 1g(x)

The situation is different in the case of nested implications. For instance, the

axiom

a@a—>b)&(c—>d)—>x-—>Yy)

cannot be in general annotated in the first-order language, because the annotation

may contain universally quantified functional variables, which denote the

realizations of the subtasks a --> b and ¢ —> d. A general form of the annotation for

the axiom with subtasks

(U->V) > X > Y)

will be the following:

Vx@.S(9) &P(x) =>3y.R(Q, x.Y),

where S(@) expresses preconditions for the subtasks (U->V).
It is still possible to restrict the prof-search to a first-order language after

initializing the functional variables to the terms synthesized for them. This is

shown in the following example taken from [®].
The methods in the classes for set manipulation defined in Section 2 are

annotated as follows:
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set

val & sel -> elem (get)
Vw. elem(w)<->3zv. sel(z) & val(v) & get(v,z) = w

Vw z,v. val(v) & val(w) sel(z) -> get(v,z) = get(w, z)

NB! The second formula of the annotation for the class set states that we do not

distinguish the sets when selecting their elements. This is in accordance with the

ideas of SSP about indistinguishability of computed values.

subset

(of.sel -> cond) -> (of.val -> is.val) (F(f))
Vw. is.elem(w) <->

dzv. of.sel(z) & of.val(v) & get(v,z) = w & apply(f, z)

exists

(in.sel -> cond) -> (in.val -> res) (G(f))

Yv. G(f) (v) <-> in.val(v) & 3z. in.sel(z) & .applyvif, z)

intersection

A.val & B.val -> res.val (spec)
Vx. res.elem(x) <-> A.elem(x) & B.elem(x)

The free functional variable £ appearing in the annotations will be in every

particular case substituted by a term synthesized for a subtask. The method of the

class intersection must be sythesized. In order to verify its correctness, one

has to prove its annotation

Vx. res.elem(x) <-> A.elem(x) & B.elem(x).

This has been done by means of a resolution method in [®].

5. SYNTHESIS OF ITERATIVE PROGRAMS

A potentially infinite sequence of objects of a class cc is specified in a version

of NUT as

1.. : cc;

Let x be a component of the class. Then, in the context, where this seguence is

specified, the names #1 .x, #2.x, ...
denote the x component of the first, of

the second etc. element of the sequence. Besides that, the names #curr.x and

#next .x denote components of two neighbouring elements of the sequence.
These are relative names applicable over the whole sequence.

In order to synthesize an iterative loop on a sequence of objects of a class cc

forsolvingthe goal #i.u, ...,
#i.v -> %*j.x,... t+j.y, where i, j



127

are fixed numbers, i < j wehavetofindasets,
...,

t of components of cc

such that

« all its elements are computable fromu, ...,v
e tcontainsx, ...,y
« the following goal is solvable:

tcurr.s,...,žtcurr.t -> žnext.s,..., žnext.t

If this set is found, then the computations are straightforward: first, computing
all elements of the set s, . . ~ t and thereafter, performing the loop

for n:=l step 1 to j-1 do

tcurr.s,...,tcurr.t -> žnext.s,..., tnext.t
od

Inthecaseof j < i, therolesof žcurr and žnext areexchanged. The

goal to be solved in the loop is

Hinext.s,..., tnext.t -> žtcurr.s,..., tcurr.t

and the synthesized program is

for n:=j-1 step -1 to 1 do

fnext.s,...,tnext.t -> žcurr.s,...,tfcurr.t
od

6. INCREMENTAL PROGRAM DEVELOPMENT BY THE PARTIAL

DEDUCTION

Matskin, Komorowski, and Krogstie [9] have formulated the principle of

partial deduction for SSP and proved its correctness and completeness. Partial

deduction, known in logic programming also as partial evaluation, is applicable
for incremental synthesis of programs from specifications. Partial deduction is a

derivation of a subgoal from partial input assumptions.

Example:

Let

#curr.t

A -> B (ka. Ff)

A ->C (A a. k)
B £ C -> D (XAbc. g)
D -> E (Ad. h)

be axioms of SSP with realizations f; k, g, h. Some possible partial deductions for

this set of axioms give the following new formulae:
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A -> D (ha. g(f,k))
B & C ->E (Abc. h(g))

These formulae together with their realizations are derived by means of SSP and

can be used as additional axioms. This will simplify the program synthesis when

the results of partial deduction can be used as parts of the required program, e.g.,
for the goal A -> D.
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FUNKTSIONAALPROGRAMMEERIMISE JA PROGRAMMIDE

SÜNTEESI PIIRIMAIL

Enn TOUGU

Kompositsioonilisuse tidhtsus programmide konstrueerimisel on leidnud tildist

aktsepteerimist. Seoses sellega on relatsioonprogrammeerimisel selged eelised

funktsionaalprogrammeerimise ees. Kahjuks puudub relatsioonprogrammeerimi-
ses iildine tehnika, mis oleks piisavalt efektiivne olemasolevate funktsionaalpro-
grammeerimise tehnikatega konkureerimiseks. Artiklis on kisitletud programmide
struktuurset siinteesi, s.o. funktsionaalprogrammide siinteesi meetodit, mis on esi-

tatav korgemat jarku funktsionaalsete kitsenduste, lihtsate tiilipide voi intuitsio-

nistliku loogika terminites. Seda meetodit on kasutatud deklaratiivsete keelte

realiseerimisel. Nimetatud keeled lubavad spetsifitseerida kontsepte relatsiooni-

dena jakasutada neid spetsifikatsioonides paindlikumalt kui funktsioone.
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