
Proc. Estonian Acad. Sci. Engng., 1998,4,2, 106-118

106

SWITCHES AND JUMPS IN HYBRID ACTION

SYSTEMS

Mauno RÖNKKÖ Anders P. RAVNand

@ Department of Computer Science, Turku Centre for Computer Science, Abo Akademi

University, Lemminkdisenkatu 14A, FIN-20520 Turku,Finland;
e-mail: mronkko@abo.fi

b Department of Information Technology, Technical University of Denmark, Bldg. 344,
DK-2800 Lyngby, Denmark; e-mail: apr@it.dtu.dk

Received 19 January 1998, in revised form 25 February 1998

Abstract. Hybrid action systems extend a conventional action system with a guarded
differential equation — a differential action — that defines the evolution ofcontinuous variables

while the guard remains true. The new action is given the weakest liberal precondition
semantics, which is illustrated by examples from a train model.

The example motivates a discussion of priorities in a system of iterated differential and

ordinary actions. The conclusion is a proposal for a standard form with an urgency of discrete

actions. The result is compared with the Branicky’s classification in “may” and “must” jumps
or switches. The asynchronous “may” switches can be modelled as interrupts of evolutions.

Key words: actions, weakest liberal precondition, hybrid systems.

1. INTRODUCTION

Hybrid systems are mathematical models for dynamical systems that exhibit

behaviours which alternate at the aperiodic instants of time between smooth

evolution and discrete transition. Typical examples of such systems are found in

the area of hierarchical, computer-based control of complex, composite physical

systems, like modern vehicles, chemical plants, or integrated manufacturing
facilities. A description and design of such systems requires a combination of

theories and techniques from the fields of control and software engineering.
In this paper, we use the established Action Systems framework ['] extended

with a differential action [?] to define and discuss various combinations of discrete

https://doi.org/10.3176/eng.1998.2.03

https://doi.org/10.3176/eng.1998.2.03

107

transitions and continuous evolutions. The main result is a characterization

of the different jumps in the Branicky’s unified model [®] by iterated, non-

deterministically composed guarded discrete and differential actions.

‘We start by defining actions, including differential actions in Section 2. Their

effect is illustrated by a train example. In Section 3, we study alternation of

differential and discrete actions. At the end, we introduce action systems and

identify a class of action systems suitable for modelling and analysis of hybrid
systems. Next, Section 4 investigates the relation between hybrid action systems
and the Branicky’s unified model for hybrid systems [*]. The link is illustrated by
a hysteresis example. Finally, the conclusions are presented in Section 5.

2. ACTIONS

An action is any statement in the Dijkstra’s guarded command language [*].
Also, the pure guarded commands can be used as actions. In a system, the actions

operate on a fixed set of variables, which identify a state in the system when

assigned values. Therefore, predicates over the variables provide a convenient way
of specifying and reasoning about states in a system. Such a predicate is called a

condition.

Given an action A, we may desire a postcondition q to hold after the execution.

The meaning or the semantics for the action A can thus be given by a mapping
between predicates, for instance, the weakest liberal precondition transformer,

‘wlp(,)’, which maps ¢ to wlp(A, q). This predicate describes the largest set of

states from which A either reaches the postcondition ¢ or fails to terminate.

Termination is defined by another transformer, ‘t’. The set of states from which

an action A terminates, i.e., reaches an arbitrary state, is given by tA.

When reasoning about sequential programs, termination is most useful, so

one uses the weakest precondition transformer, which Dijkstra [*] defines by
wp(4, q) = wip(4, q) A tA

The weakest precondition defines the basic property for any action: the set of

states in which an action is enabled, i.e., the states from which an action A may start,

is givenby gA = -wp(A, false) orequivalently ~wlp(A, false) V ~tA. Thus,
it is ensured that either the action terminates with someresult or it never terminates.

2.1. Elementary and composite actions

In this paper, we use capital letters such as X, Y, F, and F to denote a

vector of variables and othercomponents. We use subscripts when referring to the

components in a vector.

We shall ignore typing of variables and expressions and assume that all

expressions used in definitions and examples are defined appropriately.

108

Let g[E/X| denote the textual substitution of free variables X with expressions
E in a predicate gq. Also, let p be a predicate. The definitions for assert and other

elementary actions, also given in [>°], are

wip({p}, q) = p=>gq

wlp(abort, q) = true

wlp(skip,g) > = ¢

wlp(X:=E,g) = ¢[E/X]

Note that abort never terminates, whereas an {}, skip, and an assignment always
terminate.

Let, as before, A and Bbe actions, and pbe a predicate. The sequential
composition, the composition by a non-deterministic choice, as well as prefixing
an action with a guard are defined as

wip(4; B, q) =. wlp(4, wip(B, q))
wip(A|B, q) = wlp(4, q) A wip(B, q)
wip(p 2+ 4,q) = p = wip(4, q)

Termination is defined using analogous formulas.

The iteration has the liberal semantics

wlp(do A od,q) = Vn2>o - wip(4™, gA V q),

where A"t = A; A™ with A° = skip.
For the iteration, the terminationist(do A od)=3n >0 - ~gA™

2.2. Differential action

The differential action [?] causes the given variables X to evolve according to a

system of differential equations as long as the guard e holds. This guard condition

may use the variables X. We use the standard convention of writing a system of

differential equations as X = F(X), where X is acomponent-wise first derivative
of X.

Definition 1. Let e be a guard and q be a postcondition, both may speak of the

variables X. The differential action e : X = F(X) has the semantics

wip(e: X = F(X), g) =

3¢ - P(O)=X A D=F(D)A
(Vr>o:(e v a)[P(r)/X] v 30 <$ <r - e[P(6)/X])

In the semantics, the first two conjuncts require the existence of the solution $

for the differential equation X = F'(X). The third conjunct isolates the first point
in time, where the guard ceases to hold.

Termination is defined exactly by the existence of such an instant:

109

te: X=F(X)= >
3% - 20)=X A ®=F(P)A
30 < - —e[®(d)/X]

Note that if the action terminates at §, then ¢[®(d)/X] holds.

An example of a travelling train

Modelling of a system with different kinds of continuous behaviour requires
the use of several differential actions. An example of such a system is a travelling
train, which accelerates to travelling velocity and travels with that velocity up to a

deceleration point, from where the train decelerates to a full stop.
Let x be the position of the train and v its velocity. The phase, where the train

accelerates to travelling velocity tv, is modelled as a differential action

v<tv: s =ol

The next phase, where the train travels with constant velocity up to a deceleration

point d, is modelled as

2 <d: 2=

The last phase, where the train decelerates to a full stop, is modelled as

v>o: 7,oü=v,-l

In this example, the phases take place consecutively. In order to model the

entire system, we could combine these three actions sequentially. However, this

requires that we know what the sequence is. Another, a more general way, is to

iterate the actions and let the actions themselves take the right sequence. In the case

of a travelling train, we would have

do r<dAv<tv > v<tv: 2,920} od

| r<dAv=tv > r<d:ž=yv
l rzr>dAv>o > v>o:2,ü=wv,-1l

This interleaving of continuous evolutions switches x between different

controlling differential equations. Another typical hybrid phenomenon is jumping,
where a continuous evolution is followed by a discrete change. We could, for

instance, add a “restart” action to the program above

zr>d Av=o > g2y

At the end of the journey, the train jumps back to start. Our objective in the

following is to investigate a standard form for expressing such phenomena with the

iteration of differential and ordinary actions.

110

3. HYBRID ALTERNATION

There are several ways to model hybrid alternation, but not all of them are

equally suitable for modelling the alternation in a hybrid system. We investigate
different forms of alternation, where time is assumed to progress during differential

actions, but not during any other actions.

The alternations are studied in a standard form do A;[Az]...A, od,
where all the actions Ay, ... ,A, are free of non-deterministic composition. An

iteration that is not in this form is translated to the standard form by atomicity
refinement [7]. For example, an iteration

do p — (9 A 1 |g— A2)
l p — 4A3

od,

where p and g are predicates and A;, Ay, and A 3 are actions without non-

deterministic choice, is translated to the standard form by propagating the guard p

in the first action yielding

do pAg — Aod
| pA g —. A
l p — A 3

A differential action describes how the variables evolve when the guard is

enabled. It also states that when the guard does not hold, the differential action has

no effect on the variables. This is called stuttering. When thinking of how a hybrid

system behaves, we are mainly interested in the stutter-free behaviour. An infinite

stuttering is seen as termination. Therefore, we introduce a notational short form

for a stutter-free differential action, which is e :— X = F(X) with the meaning of

e —e: X = F(X). The stutter-free differential action has the property that it is

enabled only when the evolution guard holds, i.e., g(e :—» X = F(X)) = e.

3.1. Strict alternation

In strict alternation, continuous evolution is given a chance for execution after

every discrete change.
Assuming that the discrete changes D are modelled by a non-deterministic

composition of ordinary actions, the continuous evolutions DA are modelled by
a non-deterministic composition of stutter-free differential actions, and that two

auxiliary boolean variables disc and cont are available, the strict alternation takes

the standard form

{disc A —cont};
do disc AgD — D; disc,cont := false, true

| cont AN gDA — DA, disc,cont := true, false
od

111

Theassertion in front of the iteration ensures that the discrete change may take place
before the continuous evolution.

The strict alternation has a major drawback, it cannot model switching. Between

continuous evolutions there must be a discrete change, otherwise the system
terminates. Moreover, the strict alternation allows continuous evolution only if

some discrete change has occurred. However, ifno continuous evolution is enabled,
the discrete changes may takes place successively.

The effect of the continuous evolution may be observed only at that point of

time, when the corresponding differential action terminates. Also, the number of

observing ordinary actions is limited; there can be only one observation by one

enabled ordinary action. This means that, if two actions were enabled, they would

be competing for the execution, even if they do not disable each other, because the

continuous evolution taking place immediately after the first discrete change could
alter the state space in such a way that the other ordinary action would become

disabled.

The strict alternation terminates, when the system cannot jump anymore,

(~disc V ~gD) A (—cont V -gDA).

3.2. Prioritized strictalternation

In this form of alternation, the continuous evolution is given a chance for

execution after all discrete changes have taken place.
The prioritized strict alternation has the standard form

{—cont};
do gD — D; cont := true

| cont AN -gD A gDA — DA, cont:= false
od

Like in the strict alternation, the effect of the continuous evolution may be

observedonly after the executionof the corresponding differential action. However,
the prioritized strict alternation allows several observations at the same time.

Any enabled actions are executed before a new continuous evolution takes place,
provided that the actions do not disable each other. Therefore, this model has

the potential to execute discrete changes forever. Since the discrete changes are

assumed to be timeless, the infinite execution would correspond to time holding still.

This, in turn, is interpreted as aborting.
The terminationof prioritized strict alternation is slightly more complicated than

in the strict alternation. The prioritized strictalternation terminates when no discrete

change is enabled and some continuous evolution has already been executed, that is

gD A (mcont V —~gDA). This underlines the drawback of this model; it cannot

model switching. Moreover, the alternation must start with a discrete change.

112

3.3. Prioritized alternation

In the prioritized alternation, the discrete changes have a priority over

continuous evolutions. However, the discrete changes may take place only when

no continuous evolution is being executed.

The prioritized alternation has the standard form

do gD > D

| -gD > DA

od

Like in the prioritized strict alternation, the effect of the continuous evolution

may be observed by several discrete actions after the execution of the differential

action. The prioritized alternation has also the potential for the discrete changes to

abort.

In comparison to the prioritized strict alternation, the continuous evolutions

are more independent of the discrete changes. The alternation may start with

a continuous evolution, even if there are no enabled discrete changes, and the

continuous evolutions may appear successively. This means that the prioritized
alternation can model both switching and jumping in hybrid systems.

The prioritized alternation terminates when no more jumping or switching
occurs, i.e., both discrete changes and continuous evolutions are disabled,

gD A —~gDA. Thisis seen by transforming the iteration to the normal form. The
action gD — D A has the same semantics as the action ~gD A gDA — DA.

3.4. Interrupting prioritized alternation

In the interrupting prioritized alternation, the discrete changes have

unconditional priority over continuous evolutions. In other words, the discrete

changes occur whenever enabled, even when the continuous evolution modelled by
a differential action has not terminated.

Let DI be a non-deterministic composition of stutter-free differential actions of

the form -gD A e: = X = F(X). The prioritized alternation has the standard

form

do gD >+ D

| 7gD — DI

od

Unlike in the previous forms of alternations, the effect of the continuous

evolution is observable at the points of time defined by the discrete action guards.
An enabled discrete action is executed immediately when it becomes enabled.
In order to ensure this, the states, in which the discrete actions are enabled, are

excluded by the evolution guard. The discrete changes may execute forevercausing
the alternation to abort.

113

Like the prioritized alternation, the interrupting prioritized alternation can

model both switching and jumping.
The interrupting prioritized alternation terminates when both discrete changes

and continuous evolutions are disabled, i.e., gD A -gDI. This is seen by
transforming the iteration to the normal form.

3.5. Thechosen form ofalternation

The prioritized alternation is chosen as the form of hybrid alternation to be

used in hybrid action systems. The prioritized alternation has the simplest standard

form, and it is not as limited as the strict alternation and the prioritized strict

alternation. The interrupting prioritized alternation gives too much priority to

discrete actions, it weakens the evolution guard, causing the continuous evolution

to vanish sometimes.

This phenomenon is illustrated by the example below.

Consider an adaptive bottle filler, where the filling is stopped depending on

how full the previous bottle was. Let x be the liquid level in the current bottle,

p be the liquid level in the previous bottle, and f(z,p) be the decision function

to stop the filling. The adaptive bottle filling is captured by a differential action

f(z,p) : © = 1. We know that when the bottle is empty, the value of zis zero.

However, because we do not know how full the bottle will be, we would like to

model the change of bottle as an action z > 0 — p,z := z,O, which is to be

executed right after the bottle has been filled. If we use the interrupting prioritized
alternation to combine theseactions, we obtain

do z>o — pye=z(
| z<OA f(z,p) = z<OA f(z,p): =1

od

which would hardly fill any bottle, because z < 0 A f(z,p) becomes false when

there is something in the bottle. The same problem does not appear in the prioritized
alternation (end of example).

For the prioritized alternation, we give the short form

alt Dwith DA (1)

with the meaning do gD — D |-gD —DA od . This form of alternation

is used for identifying hybrid action systems that are used in modelling and analysis
of hybrid systems.

114

4. JUMPS AND SWITCHES IN THE UNIFIED MODEL

Branicky gives the dynamics of the unified model with the help of jump sets

in []. Here jump means a jump from one state of the system to another. Since in

hybrid action systems, the values of the variables define the state of the system, a

jumpset may model both switching and jumping in the system. The used jump sets

are autonomous jump sets A, controlled jump sets C', and the corresponding jump
destination sets 7". Informally, the system evolves continuously until it enters either

A or C. If the state is in A, the system must make a jump into the destination state

T according to the autonomous jump transition map G, which relates states in A to

states in 7" with the current control input. If the entered state is in C, the system may
choose to change the state into a state in 7". An illustration of the dynamics is shown

in Fig. 1. In the unified model, there are also jump delay maps, which express the

time delay associated to each jump in the system.

Next, we describe the behaviour of a hybrid action system in terms of the jump
sets. These we obtain from the hybrid alternation (??) that is present in a hybrid
action system.

Autonomous jump sets

Let the continuous behaviour in a hybrid alternation be a non-deterministic

composition of a general form

eAD —-)XZFI(X)
s

|

len A gn:>X=F(X),

where forall 7 = 1...n, the e; speaks only of evolving variables X and g; is free of

X. A continuous evolution in the system (solid arrow in Fig. 1) is modelled by a

differential action in the composition above. For each differential action 7 = 1...n,
the autonomous jump set A; is defined by the predicate —e; A g;, which specifies
all those states, to which the corresponding evolution may lead. Together all the

individual autonomous jump sets form the autonomous jump sets A of the system.
This covers the case of finite collections of jump sets. For countable infinite

jump sets, one might encode the current index as a program variable c: and augment

Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and

the solid lines continuous evolutions.

115

the guards by the condition ¢z = ¢, and similarly, replace F; by a function dependent
on ct. The result would be one remaining differential action.

Jump transition map and jump destination sets

Let the discrete changes in the hybrid alternation be described by an action

gD —D, where D may be a non-deterministic composition of actions.

A jump transition map G; for an autonomous jump set is computed by
{A;}; do gD — D od. Thus, the corresponding jumpdestination set is defined

by

3Xo - wlp({Ai}; do gD >D od, X = Xo)

The jump transition maps and the jump destination sets for individual autonomous

jump sets form together the jump transition map G and the jumpdestination sets 7’

of the system.

Controlled jump sets

A hybrid action system does not exhibit explicit controlled jump sets, where

the evolution may change anywhere within the jump set. However, we can

identify restricted controlled jump sets, where the evolution may change at some

predetermined subregions.
Let the following non-deterministic composition be a part of the continuous

behaviour in a hybrid alternation

e 1 :+ X = F(X)
D
en :> X = F(X)

This describes uniform behaviour in the region e, which is a disjunction of the

evolution guards e; V ... V e,. If there exists such an order for the differential

actions in the non-deterministic composition that

Vi-3j- wlp(ej :— X = F(X), e;) = true, where i =2..n and j = 1...n,

the region e is path connected. In that case, the differential actions describe the paths
that connect the subregions. Such a path connectedregion e is acontrolled jump set.

The subregions, where the evolution may change, are specified by the negations of

the individual evolution guards —ey, ..., —ey,.

The separate controlled jump sets form together the controlled jump sets C

of the system. The corresponding jump destination sets are included in the jump
destination sets 7.

Transition delay maps

There are no transition delay maps attached to the hybrid alternation. This is

due to the approach that the time is implicitly present only during the continuous

evolution modelled by the differential actions. If we wish to add the notion of delay
to the jumps taking place in the system, we may model the delay explicitly with an

extra variable and a differential action that evolves it.

116

4.1. Theother alternation models

The relation between the other hybrid alternation models in Section 3 and the

Branicky’s unified model is more restricted than the relation of the chosen form of

hybrid alternation.

As mentioned earlier, the problem with the strict alternation and with the

prioritized strict alternation is that they do not allow switching. This excludes the

controlled jump sets. Furthermore, these models require that the system starts by a

discrete change, which is a limitation not present in the unified model.

The interrupting prioritized alternation makes the evolution guards interruptible

by the discrete changes. Hence, every evolution is taken within a controlled jump
set specified by the evolution guard. This is a special case in the unified model,

where the dynamics is always covered by a controlled jump set.

4.2. A hysteresis example

We illustrate the relation between hybrid action systems and the Branicky’s
unified model with a hysteresis example from [®]. In this example, a room is

controlled by a thermostat. The difference from the desired room temperature is

denoted by d. The desire is to keep a room temperature such that -/ < d < [by
either heating the room, A = 1, or cooling the room, h = —l, where h is used as a

control variable. The heating is kept on as long as d < [, otherwise the thermostat

changes to cooling. Similarly, the cooling is kept on as long as —! < d, otherwise

the thermostat changes to heating. The heating is on initially. Figure 2 illustrates

the control policy.

The hybrid alternation modelling of the behaviour of the thermostat has four

actions. The two ordinary actions change from heating to cooling and from cooling
back to heating, and the two differential actions model the continuous evolution

during the heating and the cooling. Let f(d, h) model the changes in the difference

of the room temperature from the desired temperature. The hybrid alternation for

Fig. 2. The control policy for the thermostat.

117

the thermostat is

alt h=lAlSd — h:=-1

] h=-llAd<-l >h:=l

with d<lAh=l :+ d= f(d,h) (2)
[~l<d Ah=-1 :=»d=f(d,h) (3)

For the differential actions in this hybrid alternation, we obtain the autonomous

jump sets by taking the partial negation of the evolution guards, yielding

A = d>lAh=l
A 2 = —lZdAhZ—].

For these jump sets, we obtain the associated jump destination sets by computing
the result of iterating the ordinary actions, yielding

Tl=le/\h=—l
T2=—lZd/\h=l

The connection between the autonomous jump sets and the jump destination

sets is that when the evolution enters A;, the system jumps autonomously to 77.

Similarly, the system jumps autonomously from As to 7. The same jump set

characterization was obtained for this example from [3].

5. CONCLUSIONS

In this paper, we have studied different models of hybrid alternation and how

the priority in these models limits the hybrid phenomena that they can exhibit. From

these models, the prioritized alternation is proposed as the standard form because it

is the most general model.

We have also compared the chosen form of alternation with the Branicky’s
unified model. We have shown that the hybrid alternation captures the autonomous

jump sets, predetermined controlled jump sets, and the jump destination sets in the

unified model. The jumptransition map is computed by the discrete actions, and the

transition delay maps are modelled with differential actions. Thus, we have shown

indirectly, how to translate a system with predetermined controlled jump sets in the

unified model to a hybrid alternation and vice versa. Branicky has given in [3] the

link between hybrid automata and the unified model. Therefore, we can use tools

designed for the analysis of hybrid automata, like HyTech, for analyzing hybrid
alternation as well.

Since the semantics for the actions is given with predicate transformers, we

can also use theorem provers, like PVS, for verifying properties in the hybrid
alternation. The theorem provers are efficient especially in proving invariant

properties, which makes this an attractive subject for future work.

118

ACKNOWLEDGEMENTS

The first author would like to thank the participants at the 9th Nordic Workshop
on Programming Theory in Tallinn for theircomments and suggestions.

REFERENCES

1. Back, R. J. R. and Kurki-Suonio, R. Decentralization of process nets with centralized

control. In Proc. 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed

Computing, 1983, 131-142.

2. Ronkkoé, M. and Ravn, A. P. Differential Equation.f as Actions. No. 109, Technical

Reports, Turku Centre for Computer Science, Abo Akademi University, Finland,

April 1997.

3. Branicky, M. S. Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD Thesis.

Massachusetts Institute of Technology, EECS Dept, 1995.

4. Dijkstra, E. W. A Discipline of Programming. Prentice Hall, Englewood Cliffs, N. J.,
1976.

5. Bonsangue, M. and Kok, J. N. Semantics, orderings and recursion in the weakest

precondition calculus. In Proc. Rex Workshop on Semantics: Foundations and

Applications (de Bakker, J. W., Rozenberg, G., and de Roever, W.-P., eds.), LNCS 666.

Springer, Berlin, 1993, 91-110.

6. Broy, M. and Nelson, G. Adding fair choice to Dijkstra’s calculus. ACM Transactions on

Prog. Languages and Systems, 1994, 16, 3, 924-938.

7. Back, R. J. R. Atomicity Refinement in a Refinement Calculus FrameWork. Reports on

computer science and mathematics, 141. Abo Akademi, 1993.

UMBERLÜLITUSED JA HÜPPED HÜBRIIDSETES
TEGEVUSSÜSTEEMIDES

Mauno RONKKO ja Anders P. RAVN

Hiibriidsed tegevussiisteemid laiendavad harilikke tegevussiisteeme tingimus-
like diferentsiaalvorranditega ehk nn. diferentsiaaltegevustega. Diferentsiaal-

tegevused defineerivad pidevate muutujate trajektoori faasid, mille ulatus on maa-

ratud vastava tegevuse lubava tingimuse kehtivusega. Uue tegevustiiiibi jaoks on

esitatud norgima liberaalse eeltingimuse semantika, mida illustreerib rongi mudeli

ndide. Ndide on aluseks ka diskussioonile prioriteetidest iteratiivsetes diferent-

siaal- ja harilikes tegevussiisteemides. Jédreldusena on esitatud diskreetsete tege-
vuste standardkuju ning tulemust on vorreldud Branicky klassifikatsiooniga, kus

trajektoori hiipped ja timberliilituspunktid jagatakse voimalikeks ja kohustuslikeks

lilituspunktideks. Asiinkroonseid voimalikke timberliilitusi on modelleeritud kui

pideva trajektoori murdepunkte.

	b10721022-1998-4-2 no. 2 01.04.1998
	PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES EESTI TEADUSTE AKADEEMIA TOIMETISED
	Untitled

	ENGINEERING TEHNIKATEADUSED
	Chapter
	Chapter
	FOREWORD
	FAST AND EFFICIENT CACHE BEHAVIOUR PREDICTION
	Fig. 1. Update of a concrete fully associative (sub-) cache.
	Fig. 2. Update of an abstract fully associative (sub-) cache.
	Fig. 3. Join for the must analysis
	Fig. 4. Join for the may analysis Fig. 5. Loop transformation.
	Untitled
	Untitled
	Fig. 7. The structure of the analysis
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	. e B LN RN o) e n sa o k i 3 k .. R st 2 v e . Sl P L o o R -y„ä k ai
	Table -1 Categorizations of memory references
	Table 2 The interpretation of the abstract cache states of Fig. 6
	Table 3 Test set of C programs with the number of instructions
	Table 4 The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set associative instruction cache with 16 byte linesize
	Untitled
	VAHEMÄLU TALITLUSE KIIRE JA EFEKTIIVNE PROGNOOSIMINE

	FORMAL VERIFICATION OF THE BINARY EXPONENTIAL BACKOFF PROTOCOL
	Client and server of the HTTP.
	BINAAR-EKSPONENTSIAALSE TAGASIVÕTMISPROTOKOLLI FORMAALNE VERIFITSEERIMINE

	SWITCHES AND JUMPS IN HYBRID ACTION SYSTEMS
	Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and the solid lines continuous evolutions.
	Fig. 2. The control policy for the thermostat.
	UMBERLÜLITUSED JA HÜPPED HÜBRIIDSETES TEGEVUSSÜSTEEMIDES

	ON THE BORDER BETWEEN FUNCTIONAL PROGRAMMING AND PROGRAM SYNTHESIS
	FUNKTSIONAALPROGRAMMEERIMISE JA PROGRAMMIDE SÜNTEESI PIIRIMAIL

	COMBINING COMMUNICATING SEQUENTIAL PROCESSES AND TEMPORAL LOGIC
	SUHTLEVATE JADAPROTSESSIDE JA TEMPORAALLOOGIKA KOOSLUSEST

	DISTRIBUTION OF SOLAR ENERGY OUTPUT IN ESTONIA
	Fig. 1. Block diagram of the simulation model for daily energy yield calculations in a domestic hot water system with stratified water in the storage tank.
	N A 2> AN GA +e i 3 aﬁ en-~'£;aze. P 2
	SESOONNE PÄIKESEENERGIA JAOTUS EESTIS

	NUMERICAL SIMULATION OF THE DISTRIBUTION CHARACTERISTICS OF FINE SOLID PARTICLES IN A HORIZONTAL PIPE
	Fig. 1. Particle mass distribution for the particle size 6 =l7 um.
	Fig. 2. Particle mass distribution for the particle size =32 pm.
	Fig. 3. Schematic diagram of the particle collision (in space).
	Fig. 4. Schematic diagram of the particle collision (in plane).
	Fig. 5. Velqcity of gas and particles in various cross-sections: — gas; particles: m m = X =O, – – – X =2SD, e X =2OOD; W exp. (6 = 32 um, D =35 mm).
	Fig. 7. The particle mass distribution for particles of different sizes at X =2OOD, D=3smm: ... =7 um; 6=17 pm: — calc., W exp. 6 = 32 um: = calc., O exp.
	Fig. 6. Velocity of gas and particles in various cross-sections: — gas at X =2OOD; particles: se= X=o, --- X=25D, m X=2OOD; H exp. (6 = 25um, D =l6 mm).
	Fig. 8. The particle mass distribution in various cross-sections: — gas at X =2OOD; particles: w= X=o; cacac X=25D; = X=2OOD; B exp. (6 = 25 um; D =l6 mm).
	Untitled
	MATEMAATILINE MUDEL PEENFRAKTSIOONILISE TAHKEFAASI LEVIKU KIRJELDAMISEKS TURBULENTSEL VOOLAMISEL HORISONTAALSES ÜMARTORUS
	Untitled

	Illustrations
	Untitled
	Fig. 1. Update of a concrete fully associative (sub-) cache.
	Fig. 2. Update of an abstract fully associative (sub-) cache.
	Fig. 3. Join for the must analysis
	Fig. 4. Join for the may analysis Fig. 5. Loop transformation.
	Untitled
	Untitled
	Fig. 7. The structure of the analysis
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	. e B LN RN o) e n sa o k i 3 k .. R st 2 v e . Sl P L o o R -y„ä k ai
	Client and server of the HTTP.
	Fig. 1. Example of the dynamics of the unified model. The dashed lines represent jumps and the solid lines continuous evolutions.
	Fig. 2. The control policy for the thermostat.
	Fig. 1. Block diagram of the simulation model for daily energy yield calculations in a domestic hot water system with stratified water in the storage tank.
	N A 2> AN GA +e i 3 aﬁ en-~'£;aze. P 2
	Fig. 1. Particle mass distribution for the particle size 6 =l7 um.
	Fig. 2. Particle mass distribution for the particle size =32 pm.
	Fig. 3. Schematic diagram of the particle collision (in space).
	Fig. 4. Schematic diagram of the particle collision (in plane).
	Fig. 5. Velqcity of gas and particles in various cross-sections: — gas; particles: m m = X =O, – – – X =2SD, e X =2OOD; W exp. (6 = 32 um, D =35 mm).
	Fig. 7. The particle mass distribution for particles of different sizes at X =2OOD, D=3smm: ... =7 um; 6=17 pm: — calc., W exp. 6 = 32 um: = calc., O exp.
	Fig. 6. Velocity of gas and particles in various cross-sections: — gas at X =2OOD; particles: se= X=o, --- X=25D, m X=2OOD; H exp. (6 = 25um, D =l6 mm).
	Fig. 8. The particle mass distribution in various cross-sections: — gas at X =2OOD; particles: w= X=o; cacac X=25D; = X=2OOD; B exp. (6 = 25 um; D =l6 mm).
	Untitled
	Untitled

	Tables
	Table -1 Categorizations of memory references
	Table 2 The interpretation of the abstract cache states of Fig. 6
	Table 3 Test set of C programs with the number of instructions
	Table 4 The numbers of occurrences of ah, am, and nc in the categorizations for a IKB 4-way set associative instruction cache with 16 byte linesize
	Untitled

