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Abstract. A method for specification-oriented generation of test data is proposed. The method is

based on a systematic application of heuristic knowledge of typical error situations, planning of the

testing process, minimization of test cases, and evaluation of the results of testing. The test

generation algorithm relies on the testing problem specification and on the knowledge base. The

specification describes the program to be tested and the external characteristics of the problem. The

program is specified by its input/output Jackson structure diagrams augmented with the links

representing additional knowledge of the problem. The knowledge base includes link patterns and

expert system rules. The approach has been evaluated by prototyping it as an expert assistant and

by performing four experiments. The experiments involved testing of a total number of 37

programs and interviewing human testers. The method can be extended to various types of software

specification methods.

Key words: Al-supported information systems engineering, software process modelling and

support, specification-based testing, test data generators, minimization of test data.

1. INTRODUCTION

Program specification and program text both provide valuable information for

program testing ["?]. Although specification-based testing is one of the most

important testing methods, research in the area of specification-oriented test data

generation methods has lagged behind other research in testing automation [*].
The majority of automated test tools use the program-based approach [**]. This

is understandable because the text of a program is certain to exist in a formal

notation and can therefore be analyzed. However, this is not always the case with

the specification: it is often missing, or is much less formal than the text.
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The main disadvantages of the current specification-based testing are:

(1) treatment of requirement combinations needs a large number of test runs,

(2) it 1s difficult to find a set of test cases which maximizes the probability of

finding errors [°]. Little attention is paid to three important topics: the test data

generation based on the current specification notations [’], the use of specific
knowledge of typical error situations, and the minimization of test data. Below

we will discuss these in more detail.

Among the specification languages used for test data generation are finite-

state automata, predicate calculus, abstract data types and high-level procedural

languages [ "’]. Typically, practical system analysis and design notations are

not used for this purpose. Some reasons were mentioned above: these notations

are often more or less informal, and the specification developed is not always
sufficient to generate an output from a given input. Furthermore, the main aim of

the current design techniques is to improve the quality of software products, thus

diminishing the need for testing. However, this need will never vanish entirely.
Specifications for complicated programs become obscure and clumsy ['°]; they
must also be verified and validated [''].

The range of valuable test data selection criteria is wide. These are primarily
of general (for example, of syntactical or logical) nature: such as, all statements

in the program must be executed at least once, the specification must be

consistent. Such criteria provide a good basis for test generation. However, a rich

body of empirical knowledge of testing ['] is rarely used in testing automation

systems. Examples of such knowledge include suggestions like “If the program
has to search for a given value in a file, then test a file with this value as the last

one”, “If the program has to deal with dates, then try February the 29th”.

Advances in artificial intelligence and, particularly, in expert systems have

simplified application of this knowledge. However, although essential, research

in the area of knowledge-based testing has received less attention []
So far, test minimization has not been a centre of interest. For that purpose,

orthogonal Latin Sguares have been proposed in [°]. Here we will apply this

method to specification-based testing.
The next section discusses the testing scenario underlying our approach and

proposes a principle of effective test data selection relying on heuristics and

minimization. The third section introduces a test data generation method based

on this principle. The final sections report the results obtained from the

evaluation of the approach and state the conclusions.

2. THE TESTING SCENARIO

In real situations, the problem of “How to test a program?” is not pure.
Rather, for instance, one has to test a program developed by a certain group of

people, to be used in certain applications, to be tested within limited resources. A
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minimization of testing resources is always essential. Thus we have a testing
problem — a request to test a program using all the information available about it
and minimizing the expenses.

To solve this testing problem, we will apply the testing process. Typically, it
consists of establishing the goals of testing, passing through different testing
phases (such as unit testing, integration testing), and evaluating testing results.
The choice of tests for each phase cannot be entirely determined before the
phase begins. For example, the modules, in which more errors have been found,
should be tested more thoroughly. Therefore, a testing phase includes

establishing the goals of the phase and iteration of testing steps. Each step
consists of test planning, test data generation, test case design, test execution,
evaluation of test results, and evaluation of the program.

The expert methods for developing the tests depend on the program, its
environment, the expert background, and on other factors. One possible
approach could be as follows. The goal of testing is to find bugs in the program
with a minimal waste of resources. Thus, when an expert starts testing, s/he

applies his/her experience to elaborate tests for the most error-prone parts of the

program (compare with testing scenarios from [']). Besides, s/he tries to
minimize the amount of test cases. Similar ideas are used in technology and
business. For example, fault tree analysis provides a systematic approach to the
identification of high risk areas of technical systems ['*]; business strategies are

analyzed by asking specific questions concerning possible areas of failure [.
We have made use of the same principles. They can be summed up as follows.

The testing scenario is based on a systematic application of heuristic

knowledge of typical error situations, planning of the testing process,
minimization of test cases, evaluation of the testing results and acguisition
of new heuristics.

The testing scenario includes the following steps.
1. Plan: evaluate the program-independent (external) characteristics of the

testing problem, establish the goals of testing, plan the level of details of the

specification, plan the amount of test cases, and plan the testing process.
2. Specify: develop and edit the program specification (internal

characteristics of the testing problem). This step may be omitted if the

specification is inherited from the earlier stages of program development.
3. Assembly: generate test data with instructions on the elaboration of most

effective tests.

4. Modify: elaborate test data, select correct output for the input data and vice
versa.

5. Monitor: execute tests and evaluate test results.
6. Diagnose & Predict: evaluate the program to be tested, forecast the

program behaviour, and decide whether to stop or continue testing.
This scenario illustrates once more the complexity of the testing task — it

involves several generic categories ofknowledge engineering applications ['°].
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3. THE TEST DATA GENERATION

The testing problem specification for the testing assistant includes two

components: program specification and environment specification. The first

defines internal, the second — external characteristics of the testing problem.
Program specification is based on Jackson structure diagrams ['”*'®] for its inputs
and outputs. As these diagrams are not sufficient for effective generation of test

data, we will augment structure diagrams with the links providing comple-
mentary information about the problem. The knowledge base includes the link

patterns representing general knowledge of typical error situations in programs,
and the expert system rules representing knowledge of the influence of the

external characteristics on the testing process.

3.1. Structure diagrams: a basis for systematic generation of test data

The principles underlying our testing scenario do not fix the program

specification formalism. We have chosen structure diagrams for the program

input and output data to be the basis of this formalism, for they have proved to

be a valuable tool for specifying the program and explaining it to the user. These

diagrams specify the problem completely for only a special class of problems
[°]. Thus, in general, they are not sufficient for deriving a program text.

A structure diagram is a labelled tree. The labels denote the names of the data

structures and elements for program input or output, plus the node types. Each

node belongs to one of the following three types: SEQUENCE, ITERATION, or

SELECTION. A node of type SEQUENCE does not carry a type label. A node

of type ITERATION is marked with an asterisk “*”, a node of type SELECTION

— with a symbol “0”. The root must be of type SEQUENCE. All sons of one

parent must be of the same type. Figure 1 shows an example of a structure

diagram. It describes an input for a program processing rainfall data. According
to this diagram, the input denoted RAINFALL consists of the iteration DAY-

RFS of the daily rainfalls DAY-RF, each of which may be positive, zero, or

negative. The iteration is followed by a sentinel EOD, indicating the end of

input. The iteration may be repeated for zero or more times, thus the shortest

input described by the diagram in Fig. 1 comprises only the EOD element.

Denoting POSITIVE as P, ZERO as Z, NEGATIVE as N and EOD as E, this

sequence may be described as <E>. Anotherpossible example input described by
this diagram is <PPE>, a sequence of two positive elements followed by EOD.

Some more examples include <PPPNZPZPZNE>, <ZZZ7E>, <ZPNNPPZZE>,
and so on.

To apply specification-based testing, one has to elaborate tests for the

equivalence classes of input/output data, for boundary (degenerate) input/output
values and for erroneous data [']. On the basis of structure diagrams, it is

possible to generate test data for each case [***'].
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The equivalence classes of input/output data correspond to the normal mode

of executing the program. In this case, every iteration is repeated for a fixed

number of times with some or all the possible selection combinations considered.

For example, if an iteration is repeated twice, a possible sequence for the

diagram in Fig. 1 will be <ZZE>, i.e. it will consist of two zero elements,
followed by EOD. All the possible inputs generated for a twofold iteration
include nine sequences: <PPE>, <PZE>, <PNE>, <ZPE>, <ZZE>, <ZNE>,
<NPE>, <NZE>, <NNE>. The boundary values occur for the zero or one

iteration, resulting in four sequences <E>, <PE>, <ZE>, <NE> for the diagram
in Fig. 1. The erroneous data consist of all the normal mode and boundary tests

with some data elements replaced by erroneous ones. Denoting an erroneous

element (a character input, for example) by R, one has the following error

situations: <RPE>, <PRE>, <PPR>, etc.

A situation where this method is not applicable may be illustrated by a

specification for a PricesOfMetals program computing prices of metals for

various types and weights (Fig. 2; the program is given in [**] and discussed in

[**]). An error in the program (when an error is detected in the input data and an

error message is printed, the wrong metal type is displayed) will never be noticed

as long as the first shipment is correct and the metal with the incorrect weight is

the same as the previous metal examined. It is difficult to generate test data that

guarantee revealing this bug with the aid of structure diagrams only. We will

augment structure diagrams with links between the nodes and apply knowledge
of errors occurring together with certain types of links.

Fig. 1. A structure diagram.
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3.2. Links and link patterns: utilizing testing heuristics

There is a large evolving body of knowledge of typical error situations; some

examples were given in the introduction. Most existing testing automation

methods do not make use of it, reinvent it anew each time they have to test a

program, or have this knowledge only in a built-in form. This may result in

inefficient testing, in too large amounts of test data or in a testing system that is

not able to adapt to changing programming environments.

To use this knowledge, we will augment structure diagrams with the links

giving additional information about the problem. A link is determined by the link

name, primary node name and (optionally) parameters. The primary node name

expresses the user’s view on the most important relationship between the link

and the diagram. For example, the WEIGHT must be greater than zero, the

EMPLOYEE names must be sorted in alphabetical order. Parameters may
include, for instance, secondary node names, numbers, texts, expressions.

The links may be defined by the user or by the system. The (partially)
augmented diagram for the PricesOfMetals program includes a user link MUST-

BE-RELATION and activates a system link ITERATION-OF (Fig. 3). The

MUST-BE-RELATION link specifies the primary node (WEIGHT) and two

parameters (the relation name and a numerical value). The ITERATION-OF link

has no parameters. Its primary node is a variable, thus any node in the diagram
may be substituted for it.

Fig. 2. A structure diagram for the PricesOfMetals program.
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The links are utilized with the help of link patterns representing heuristics of

testing. Figure 4 shows examples of link patterns, resolving the problems with the

PricesOfMetals program. The patterns represent some heuristic knowledge of

effective test data generation for a restricted value and an iterative input. Figure 5

illustratesa test suite corresponding to the diagramand to the links inFigs. 3 and 4.

USER-LINK (MUST-BE-RELATION WEIGHT GREATER 0)
SYSTEM-LINK (ITERATION-OF x)

Fig. 3. Links for testing the PricesOfMetals program.

LINK-PATTERN

NAME : MUST-BE-RELATION

COMMENT :Usethislinkwhenthe primarynodevalue
must be compared with a numerical value

PRIMARY-NODE : x

ASSOCIATED-WITH : x

PARAMETERS :yz

CONSTRAINTS : IS-LEAF(x)
HEURISTICS :

IF TESTING-MODE(NORMAL) THEN SET-PARTITION (Select x y z)
IF TESTING-MODE(BOUNDARY) AND

BELONGS-TO(y (LESS-OR-EQUAL GREATER-OR-EQUAL) )
THEN SET-PARTITION (Select x = z)

IF TESTS-WITH-ERRORS(YES) AND

BELONGS-TO(y (GREATER GREATER-OR-EQUAL EQUAL))
THEN SET-PARTITION (&ERROR : Selectx LESS THAN z)

IF AMOUNT-OF-TESTS(LARGE) AND

TESTING-MODE(BOUNDARY) AND

BELONGS-TO(y(GREATER-OR-EQUAL GREATER) )
THEN SET-PARTITION (Select x A LITTLE BIT GREATER THAN z)

LINK-PATTERN

NAME : ITERATION-OF

COMMENT:Usethislinkwhenyouhaveaniteration of anode
and want to test its subordinates (leaves) more thoroughly

PRIMARY-NODE : x

ASSOCIATED-WITH : x

CONSTRAINTS : IS-FATHER-OF-ITERATED-NODE(x)
COMPUTE : COLLECT-LEAVES-OF-NODE-SUBTREE(x y)
HEURISTICS :

SET-PARTITION (Select different y values)
IF AMOUNT-OF-TESTS(LARGE)
THEN SET-PARTITION (Select equal iterated y values)

Fig. 4. Two link patterns.
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Every link pattern includes the link name, the associated node name, the

primary node name and heuristics. In addition, it may include comments, the link

parameters, constraints, procedures for computing the values to be used in the

test generation, and actions. The primary node name and link parameters are

substituted from the link. As shown in Fig. 4, the associated node may coincide

with the primary node. It may also be computed using the primary node and

parameters.

3.3. The environment specification and the rule base: minimizing the test

data

The amount of generated test data may be very large. To minimize it, one

must take into account also the external characteristics of the testing problem,
such as the responsibility of the task, the quality of the program, the reputation
of the producer. To manage the amount and choice of test data, we have

established several control parameters which depend on the external

characteristics. Each of the parameters has a well-defined effect on the test data

generation process, so these effects are built into the test data generation
algorithm; moreover, the parameters may be used in link patterns and expert

TEST:

(Select different (METAL WBRAC PCOEFF) values)
METAL WBRAC PCOEFF

METAL WBRAC PCOEFF

EOF-C

~ (Select different (XMETAL WEIGHT) values)

— > XMETAL

(Select WEIGHT GREATER 0) WEIGHT

XMETAL

(&ERROR : Select WEIGHT LESS THAN 0) WEIGHT

EOF-S

TEST:

(Select different (METAL WBRAC PCOEFF) values)
METAL WBRAC PCOEFF

METAL WBRAC PCOEFF

EOF-C

(Select different (XMETAL WEIGHT) values)
XMETAL

(&ERROR : Select WEIGHT LESS THAN 0)WEIGHT

XMETAL

(Select WEIGHT GREATER 0) WEIGHT

EOF-S

Fig. 5. A test suite.
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system rules. On the other hand, the choice of the parameters’ values for a given
environment specification is heuristic. The current implementation of the method

uses the following control parameters.
1. The test data elaboration level (recommendations/diagram). Throughout

this paper, we are discussing the structure diagram level generation of the test

data if not explicitly stated otherwise. On the first level, only recommendations

are given.
2. Mode of test data generation (normal/boundary).
3. Inclusion of errors into the data (yes/no).
4. Amount of test data (large/medium/small/an integer). The value may be an

integer determining the maximum test suite size.

5. Number of iterations (an integer).
6. Mode of iteration (concatenation/combination).
7. Interaction between sequential subproblems (yes/no). The choice depends

on whether sequential subparts of the specification interact or not.

8. Combining mode (all combinations/Latin Squares method/each leaf at least

once).
For example, the test suite in Fig. 5 is generated for the following control

parameters:
TEST-ELABORATION-LEVEL(DIAGRAM), TESTING-MODE(NORMAL),
TESTS-WITH-ERRORS(YES), AMOUNT-OF-TESTS(SMALL),

NUMBER-OF-ITERATIONS(2),MODE-OF-ITERATION(COMBINATION),
INTERACTION-BETWEEN-SUBPROBLEMS(YES),COMBINING-MODE(ALL).

3.4. The test data generation algorithm

The test generation algorithm utilizes the components of the specification in

the following way. The structure diagram is used for systematic generation of

test data. The links partition the data into complementary heuristics-based

equivalence classes. The control parameters determine the type of the test data

andkeep the amount of data within required limits.

Figure 6 shows an algorithm that implements the principle “Systematic
application of heuristic knowledge with minimization” for the structure diagram
level generation of the test data. Here, the ROOT function returns the name of

the root of the structure diagram. The function LEFT-SON(N) gives the name of

the left son of node N or NIL if N is a leaf. Some comments on the algorithm
will follow.

The SET-NODE-ENVIRONMENT procedure uses link actions to set the

node processing environment. In particular, the test generation control

parameters are used by default. A list of active recommendations is composed
for each link associated with NODE. This list gives complementary information

concerning elaboration of the test data if there is only one element in the list. An

example of such a heuristics is (Select different (WEIGHT XMETAL) values) in

Fig. 5. If there are several elements in the list, its effect will be additional
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partitioning and therefore increasing amount of the test data. For example, the

heuristics (Select WEIGHT GREATER 0) and (&ERROR: Select WEIGHT

LESS THAN 0) partition the values of WEIGHT node into two distinct classes,

the last of them including erroneous input.

The FORM-SEQUENTIAL-SUITES procedure uses the list of the sons’ test

suites and the current environment to elaborate selections and iterations. Some

examples follow. IfLIST-OF-SUITES is empty, then the result is also an empty
list. If the sons are of type SELECTION, then their test suites are merged. If the

procedure GENERATE-TESTS:

Evaluate the control parameters;
NODE-TESTS (ROOT, TEST-SUITE);
Print test cases from TEST-SUITE

end GENERATE-TESTS.

procedure NODE-TESTS (NODE, TEST-SUITE):
comment Elaborate actions of links associated with NODE to set the current

environmentofNODE ;

SET-NODE-ENVIRONMENT (NODE, ENV);
comment Use the structure diagram to form the component testsuites;
if LEFT-SON (NODE)=NIL
then LIST-OF-SUITES:=(((NODE)))
else

SON-LIST:=list ofall sons ofNODE;

LIST-OF-SUITES:=list ofall non-empty test suites for all nodes from

SON-LIST

endif;
comment Use linkstoestablish complementarypartitionsof the testdata ;
LINK-LIST:=list of links associated with NODE;
LIST-OF-PARTITIONS:=list including one element -a listofactive

recommendations - foreach link from LINK-LIST;
comment Use the control parameters to combine the complementary partitions

and sons' suites into TEST-SUITE ;

FORM-SEQUENTIAL-SUITES(LIST-OF-SUITES, ENV,
LIST-OF-SEQ-SUITES),

ifLIST-OF-SEQ-SUITES = ()
then TEST-SUITE:=()
else

APPEND(LIST-OF-PARTITIONS,LIST-OF-SEQ-SUITES,
PARTITIONS-AND-SUITES),

COMBINATIONS(PARTITIONS-AND-SUITES, ENV, CSUITE);
ELABORATE(CSUITE, ENV, TEST-SUITE)

endif

end NODE-TESTS.

Fig. 6. The test data generation algorithm.
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son is of type ITERATION, then the elaboration is determined by the iteration

control parameters.
Each of the LIST-OF-PARTITIONS and LIST-OF-SEQ-SUITES lists may be

thought of as a sequence of selections of elements — instructions or test cases.

These two lists are appended. The COMBINATIONS procedure takes the result

and replaces the sequence of selections of elements by the selection of element

sequences according to the combining control parameters. The last sequences are

concatenated, so the depth of the structure diagram is reduced by one. The

combining procedures include, for example, the following. If the testing
resources are large, it may be suitable to generate all the combinations of

selection elements. For medium resources, it may be useful to include all

pairwise combinations of elements into TEST-SUITE. This is a generalization of

the Latin Squares method for the test data generation proposed in ["°]. If a small

amount of test data is desirable, then it may be sufficient to ensure that each

element occurs in the node’s test suite.

The ELABORATE procedure adjusts erroneous tests and the exact amount of

test cases. If the node is a root, the test cases with exactly one erroneous data

element are included into the test suite [']. Otherwise, the test cases with at most

one error are retained. If the test suite size has been given an integer value, then

the corresponding number of test cases is selected from the test suite.

4. EVALUATION OF THE APPROACH

The approach has been evaluated by prototyping it in PROLOG as a testing
assistant and by performing four experiments.

The specific testing knowledge is represented in the assistant’s knowledge
base — in link patterns and in the expert system rule base (the assistant’s rule

base is presented in [*°]). Link patterns are given in the form similar to that

illustrated in Fig. 4. The rules are given in the following format: RULE (15
(TESTING-WRT-JOB IS GOOD IF OVERALL-TESTING IS SATISFAC-

TORY AND RESPONSIBILITY IS LOW) 4). They are used to control the

testing process and to evaluate the control parameters. For example, a rule RULE

(30 (NUMBER-OF-ITERATIONS IS 0 IF TESTING-MODE IS BOUNDARY

AND TESTING-RESOURCES IS LIMITED) 5) says that if the son is of type
ITERATION, the testing resources are limited, and the data are generated in the

boundary mode, then the result of the combination is an empty list (with
weight 5).

We have made four experiments to evaluate the efficiency of the approach
and the correspondence of the testing model proposed above to the way humans

try to validate their programs. Part of the experiments involved the testing
assistant, part of them required interviewing and hand simulation.
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To evaluate the efficiency of the method, we have examined 37 programs and

program fragments from various sources. Most of them — 20 programs and

fragments — were taken from the “Common Blunders” section and its Appendix
(“Points to Ponder”) of [**]. The specifications for these programs were mostly
not available, and hence we wrote them based on the clarifying English text and

on the implementation. There were 14 buggy programs and six programs that

needed defensive programming with a total number of 35 errors. The method

demonstrated 31 errors definitely, while detection of remaining four errors (for
example, comparing an input against some fixed value to determine end of input
data) was shown to be dependent on the current computing environment. Errors

of this kind can be detected by rules like “If floating point numbers are used to

terminate iteration, then...” and utilized to improve the specification-based
evaluation of program reliability. Eight link patterns were sufficient to detect all

the errors. Only one of the programs (Payments, p. 107-109) required generation
of tests on the basis of the output structure diagram.

The second experiment involved evaluation of specification-based testing
efficiency in terms of program-based adequacy criteria. A random sample of 12

programs was selected from textbooks [**2°]. A first nontrivial program, if it

existed, was taken from each 100 consecutive pages of the books. All the

programs had clear English descriptions of their intended function, so it was easy
to draw up the specifications. Hand simulation of testing these programs showed

that as tutorial programs, they contained relatively few “real” errors (there were

boundary mode errors in four programs), but were mostly sensitive to erroneous

input. Two additional link patterns were required. The main result of the

experiment was that the test data, generated from specifications by the proposed
method, satisfied the branch adequacy criterion for all the programs from the

above sample and the previous experiment.
The objective of the third experiment was to evaluate the performance of the

method when compared to that of a human testing expert. We compared the test

data given in ['] for five programs (TRIANGLE, DIMENSION, MTEST,
DISPLAY, BONUS) with the data generated by TESTER (for DIMENSION,
MTEST, and TRIANGLE) or by hand simulation (for DISPLAY and BONUS).
The first conclusion was that these programs required ten new link patterns —

that is relatively more than those discussed above. The reason for this can be as

follows. We suppose that the programs can be distributed into similar (in some

respect) classes. Within each class, the number of necessary new link patterns

grows fast at the beginning, but then starts diminishing rapidly. This process was

clearly observed in the previous two experiments. The programs under

consideration are of different kind and/or nearer to real applications. Therefore,
initially a greater number of new link patterns was required. The second

conclusion from this experiment states that the test data generated by TESTER

on recommendation level were close to those suggested in ['], although these

data did not coincide. The differences were mainly due to the ordering of the
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recommendations and allocation of recommendations to the testing modes. For

example, the tests for the equivalence classes of DIMENSION program in [']
included the first equivalence class — a test with one array descriptor; this case

was considered a boundary test by TESTER system.
The previous experiments confirm the efficiency of the proposed method and,

consequently, the test data generation principle underlying it. This conclusion is

supported by the observation that human expert validation of programs, business

procedures and technical applications follows in many cases in the same way (cf.
section 2). It is interesting whether this principle can be considered a model of
human non-expert program testing. Our fourth experiment was designed with
several hypotheses in mind. They stated that the human non-expert test

generation process (I)is not systematic, (2)is systematically following the

specification text, (3)is systematically following any formal specification,
(4) utilizes heuristics, (5) does not make use of heuristics, (6) uses minimization,
and (7) does not use minimization. The experiments involved two eight-person
groups of third-year computer science students who had an experience in

programming and packages, but were not very strong in program testing. The

groups were given two different versions of the BONUS program specification
[']. The versions differed in the order of descriptions (e.g. EMPTAB first versus

DEPTTARB first), and in the hints indicating higher need for some kind of tests

(e.g. an experienced programmer maintaining the database and a beginner
implementing the BONUS program in one specification, versus an insecure

payroll system and an expert implementing the program in another).
The experiment demonstrated that 15 students out of total 16 selected test

data in a systematic way, although the grounds for the systematization were not

necessarily the same as those implemented in the testing assistant. Ten students
utilized more than one criterion of systematization. The most frequently used
criteria were: the intrinsic ordering of concepts (for example, in both groups six
students considered DEPTTARB first — this order might have been suggested by a

vision of the database schema behind the BONUS program); exhaustive
utilization of heuristics-based suspicious situations (e.g. considering together all
the empty file tests, or all tests, dealing with equal/unequal data values — in
eleven cases); mode of test generation (in eight cases). The order of presentation
did not seem to be of much importance — at least, as far as more influential
factors were involved. No conscious test data minimization effort was observed,
neither in the form of combining different heuristics into one test, nor in the form
of exploiting the hints mentioned above. This indicates that minimization may
require higher skills from the testing personnel and therefore more sophisticated
support from the testing assistant than other test generation activities. The

experiment also points out the potential usefulness of exploiting different

specification models for the test data selection.

The method can be applied to various types of specification formalisms. The
structure diagrams correspond to suitably bracketed regular expressions [°]. The
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last serve as a basis or as a sublanguage in many specification methods. For

example, both the Data Dictionary definitions and process specifications in

Structured Analysis [*'] are given in an equivalent notation. Many notations for

Structured Programming (pseudocode or Structured English, Nassi—-Schneider-

man diagrams [*], etc.) may be described with the help of regular expressions.
The sequence, selection and iteration statements are sufficient to express any

flowchartable program logic [*]; so here is a good chance to integrate the

algorithm into the specification. Real-time systems are designed with the aid of

structure diagrams ['*], distributed processes — as sets of regular expressions [*],
and so on. To make a better use of system specifications from the earlier

development phases, it is desirable to build the test generation mechanism into a

CASE tool. Last but not least, use of the test data generation principle proposed
above is not restricted to any specification method.

5. CONCLUSION

We have proposed a hypothesis that effective test data selection process may
be characterized as a systematic application of heuristic knowledge with

minimization. This hypothesis has been applied to specification-based testing.
The knowledge base structure, the testing problem specification, and the test data

generation algorithm have been elaborated, a testing assistant prototype has been

implemented, and experiments have been performed. The experiments have

demonstrated that the proposed method can effectively be used for program

testing; that the test data generated from specifications by the proposed
approach, in many cases also satisfy the branch adequacy criterion; that in many

aspects, the performance of the method is close to that of the human expert; and

that the principle “systematic application of heuristics” can be taken as a model

of a certain class of a non-expert program testing activity (although the grounds
for systematization may differ from those implemented in our system).
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TEADMUSLIK TESTIDE GENEREERIMINE SPETSIFIKATSIOONI

PÕHJAL

Jaak TEPANDI

On loodud testide genereerimise meetod, mis tugineb programmi spetsifikat-
sioonile. Meetodi aluseks on siistemaatiline tiilipiliste veaolukordade kohta

kédivate heuristiliste teadmiste rakendamine, testimisprotsessi planeerimine,
testide minimiseerimine ja testimise tulemuste hindamine. Testide genereerimise
algoritm pohineb probleemi spetsifikatsioonil ja teadmusbaasil. Spetsifikatsioon
kirjeldab testitavat programmi ja selle viliseid omadusi. Programmi spetsifikat-
siooniks on tema sisendi/véljundi struktuuridiagrammid, mida on tdiendatud

probleemi kohta lisainfot andvate seostega. Teadmusbaas sisaldab seoste must-

reid ja ekspertsiisteemi reegleid. Vaadeldavat meetodit on hinnatud, luues testija
assistendi prototiiiibi ja tehes neli eksperimenti. Eksperimendid holmasid kokku

37 programmi testimist ja testijate intervjueerimist. Meetodit voib kasutada

erinevate tarkvara spetsifitseerimise formalismide puhul.


	b10721022-1997-3-2 no. 2 01.04.1997
	Chapter
	ENGINEERING TEHNIKATEADUSED
	CONTENTS
	RESIDENTIAL THERMAL ENERGY STORAGE DEVELOPMENT
	Fig. 1. Typical system peak load "
	Fig. 2. Arrangement of a thermal storage system
	Fig. 3. Transient response in storage media.
	Fig. 4. Transient response in an air handling system.
	Table 1 Dimensions of major components
	Table 2 Properties of pentaerythritol ]
	ERAMU SOOJUSSALVESTI

	THERMAL SHOCKS AND FATIGUE LIFE OF HELICALLY COILED ONCE-THROUGH STEAM GENERATOR TUBES IN TRANSITION BOILING ZONE
	Fig. 1. Schematic presentation of the DNB zone in a helically coiled tube
	Fig. 2. Oscillation intensity of wall temperature.
	Fig. 3. Curves of wall temperature oscillation: a) Breus & Beljakov [*]; b) current work, Ly=l; ¢) [q=o.3
	Fig. 4. Autocorrelation function of wall temperature oscillation (a) and spectral density (b).
	Fig. 5. Dependence of stress oscillation intensity on the Z number.
	Fig. 6. Dependence of fatigue life under definite stress oscillation intensity on the dimensionless group number Z.
	OTSEVOOLU AURUGENERAATORI KEERDTORUSTIKU TERMOŠOKK JA TÖÖIGA TEISE KEEMISKRIISI TSOONIS

	ON RADIAL DEFLECTIONS IN CYLINDRICAL SHELLS UNDER LOCAL LOADING
	Fig. 1. Loading conditions.
	Fig. 2. Concentrated load, v = 100.
	Fig. 3. Concentrated load, A = 5.
	Fig. 4. Pressure along circular arc, A = 5, 8 = 7/10.
	Fig. 5. Pressure along circular arc, A = 5, v = 0.01.
	Table 1
	Table 2
	Table 3
	Table 4 Table 5
	Untitled
	LOKAALSELT KOORMATUD SILINDRILISE KOORIKU RADIAALSIIRETEST

	ADAPTIVE ESTIMATION SCHEME FOR LINEAR INTERCONNECTED SUBSYSTEMS
	SEOSTATUD ALAMSÜSTEEMIDE OLEKU JA PARAMEETRITE ADAPTIIVNE HINDAMINE

	IMPROVEMENT OF ENERGY TRANSFER IN BIDIRECTIONAL PHASE CONVERSION CIRCUITS BY SWITCHED-MODE POSITIVE-SEQUENCE FILTERS
	Fig. 1. Examples of the balancing power circuits using a positive-sequence filter: a) three- to single-phase conversion; b) single- to three-phase conversion.
	Fig. 2. Three- to single-phase power conversion circuit, using the time-variable transformer and the time-invariant inductor.
	Fig. 3. Phasor diagram for the ideal operation mode with sinusoidal supply currents in the circuit in Fig. 2.
	Fig. 4. Characteristic per unit waveforms in the circuit in Fig. 2: a) ideal operation mode with sinusoidal supply currents; b) 12-pulse operation mode with supply current having the zero step.
	Fig. 5. Three- to single-phase power converter, using an one-core time-variable transformer and a controlled rectifier bridge.
	Fig. 6. Characteristic per unit current and turn-number waveforms in the circuit in Fig. 5: a) 12-pulse operation mode; b) 6-pulse operation mode.
	Fig. 7. Power circuit of the proposed 6-pulse three- to single-phase converter.
	Fig. 8. Voltage, current, and power waveforms in the circuit in Fig. 7.
	Fig. 9. Power circuit of the proposed 6-pulse single- to three-phase converter.
	Fig. 10. Voltage, current, and power waveforms in the circuit in Fig. 9.
	KAHESUUNALISTE FAASIMUUNDUSAHELATE ENERGIAÜLEKANDE TÄIUSTAMINE LÜLITI TÜÜPI PÄRIJÄRGNEVUSFILTRITE ABIL

	KNOWLEDGE-BASED TEST GENERATION FROM SPECIFICATIONS
	Fig. 1. A structure diagram.
	Fig. 2. A structure diagram for the PricesOfMetals program.
	Fig. 3. Links for testing the PricesOfMetals program.
	Fig. 4. Two link patterns.
	Fig. 5. A test suite.
	Fig. 6. The test data generation algorithm.

	TEADMUSLIK TESTIDE GENEREERIMINE SPETSIFIKATSIOONI PÕHJAL
	INSTRUCTIONS TO AUTHORS
	Untitled
	Untitled


	Illustrations
	Fig. 1. Typical system peak load "
	Fig. 2. Arrangement of a thermal storage system
	Fig. 3. Transient response in storage media.
	Fig. 4. Transient response in an air handling system.
	Fig. 1. Schematic presentation of the DNB zone in a helically coiled tube
	Fig. 2. Oscillation intensity of wall temperature.
	Fig. 3. Curves of wall temperature oscillation: a) Breus & Beljakov [*]; b) current work, Ly=l; ¢) [q=o.3
	Fig. 4. Autocorrelation function of wall temperature oscillation (a) and spectral density (b).
	Fig. 5. Dependence of stress oscillation intensity on the Z number.
	Fig. 6. Dependence of fatigue life under definite stress oscillation intensity on the dimensionless group number Z.
	Fig. 1. Loading conditions.
	Fig. 2. Concentrated load, v = 100.
	Fig. 3. Concentrated load, A = 5.
	Fig. 4. Pressure along circular arc, A = 5, 8 = 7/10.
	Fig. 5. Pressure along circular arc, A = 5, v = 0.01.
	Fig. 1. Examples of the balancing power circuits using a positive-sequence filter: a) three- to single-phase conversion; b) single- to three-phase conversion.
	Fig. 2. Three- to single-phase power conversion circuit, using the time-variable transformer and the time-invariant inductor.
	Fig. 3. Phasor diagram for the ideal operation mode with sinusoidal supply currents in the circuit in Fig. 2.
	Fig. 4. Characteristic per unit waveforms in the circuit in Fig. 2: a) ideal operation mode with sinusoidal supply currents; b) 12-pulse operation mode with supply current having the zero step.
	Fig. 5. Three- to single-phase power converter, using an one-core time-variable transformer and a controlled rectifier bridge.
	Fig. 6. Characteristic per unit current and turn-number waveforms in the circuit in Fig. 5: a) 12-pulse operation mode; b) 6-pulse operation mode.
	Fig. 7. Power circuit of the proposed 6-pulse three- to single-phase converter.
	Fig. 8. Voltage, current, and power waveforms in the circuit in Fig. 7.
	Fig. 9. Power circuit of the proposed 6-pulse single- to three-phase converter.
	Fig. 10. Voltage, current, and power waveforms in the circuit in Fig. 9.
	Fig. 1. A structure diagram.
	Fig. 2. A structure diagram for the PricesOfMetals program.
	Untitled

	Tables
	Table 1 Dimensions of major components
	Table 2 Properties of pentaerythritol ]
	Table 1
	Table 2
	Table 3
	Table 4 Table 5
	Untitled
	Fig. 3. Links for testing the PricesOfMetals program.
	Fig. 4. Two link patterns.
	Fig. 5. A test suite.
	Fig. 6. The test data generation algorithm.
	Untitled




