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Abstract. This paper describes a decentralized state estimation scheme for linear discrete-time

systems. It can also be used for recursive correction of possible unknown parameters, located in

subsystems. The whole procedure is based on the repetitive real-time implementation of the well-

known Kalman filter algorithm.
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1. INTRODUCTION

Recent years have seen growing interest towards decentralized control and

estimation problems. For example, in most multi-layered planner-based
autonomous robot architectures, the emergent behaviour is generated as an

interaction between competing constituents [']. On the same principles, the

sensor information filtering and filter adaptation layer could be based.

Several papers discuss decentralized filtering. This paper analyzes a scheme

of multi-level adaptive state and parameter estimation, based on the straight
decomposition of the basic system of equations, defining the best centralized

estimator [*]. The observable process is assumed to be a sampled-data Gaussian

random process with parameters the values of which may be initially unknown.

The actual parameter value is supposed to be one from the predefined set of

values. To reduce the computational burden and to localize uncertainties, the

decomposed form of filtering is used. As a result, we have at our disposal a set of

Kalman filters, each for one subsystem, where the subsystem's state estimate is

recursively generated, and the state estimates from all other subsystems are also
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taken into consideration. In the case of subsystem uncertainties, simple
competing adaptation is used. Both the decentralized state estimation and

subsystem parameter identification processes allow for a real-time

implementation.

2. PROBLEM STATEMENT

Consider a discrete-time linear dynamic system consisting of m, m =2, sub-

systems in the form

m

x,—(k+l)= Ai(a,—)x,-(k)+zA,-jxj(k)+u,-(k),
jäi

yi(k)= Hix;(k)+v;(k), i=12,...m k=1,2,.

The noises u,(k) and v,(k) are assumed to be zero-mean white Gaussian

processes with covariance matrices R;(k) and Q;(k), respectively. Symbol o;

stands for an unknown parameter of the i-th subsystem, given by the set of

possible values and by a priori probabilities of appearing. The unknown

parameters are located in matrices A;. They may reside as well in matrices

H;, R;, and Q;. State transition interconnection matrices A;; represent the only

allowed couplings between subsystems.
The problem is to generate the state estimations X(k), using measurement

sequences

Yk =[}’i(l)’}’i(2)v---’}’i(k)], i=12,..,m k=1,2,...

such that for the entire system, the mathematical expectation of the squared
estimation error

Hk)=E (x(k)-2()) Wr()-Z0)), W>o

takes its minimum. In addition, the value of the unknown parameter must be

identified during the filtering process.

3. DECENTRALIZED STATE ESTIMATION

Let us assume now that all the parameters have already taken one value from

the set of the possible ones, and during the estimation process they do not

change. As is well known, the best estimator for the defined overall system after

n measurements is represented by the two-point boundary value problem [*]:



109

m

%k +ln)=A%(ki) +0,(k) + Y AT, (Kin)
i#]

m

Ai(K)= A (ke+ 1)+HR (y; (k +1) = H,%;(k + 1))+ ZA]'—,-Ä j(k+l)
jäi

with boundary conditions

A;i(n)=o,

ši (Oln) = fi(OIO) + Ci(O{A,}\., (0) +žA]„Ä] (0):„
jäi

where

%;(000)=; +C;(0)H;R;™ (v;(0)- Hym;), —m; -given,

Ci(0)=(7+PR(O)H;R"H;)P(0), P(0) - given,

k=o,l, 2,..n-1; i=l 2,...;m.

Using the Kalman filter derivation scheme, we can transform these equations
into a partly recursive form:

x; (kln) = %; (klk)+ C;(k)[A;)„ i(k)+ ZA;,-Aj(k)J + 571 (k)- B, (kln),
jai

x;(0ln) — given and A;(n)=0,

where

Bi(kln)=A;s7" (k~1)- B, (k- I|”)+2Pij (Aj(k- I)+2Aijfj(k-1n),
iy i

B;(0ln)=0,

and

§; (k)= (1 + Pi(k)Hi'Ri_lHi)
C;(k) =57 (k)P (k)

F(k)=ACi(k-1)A! + Q;,

Fj(k)= AiCi(k - 1)A;.
The term X; (klk) is generated recursively
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ž; (klk)= Aiži(k-Illk-1)+C; (k)H;(k)R;"(; (k)-H; A%; (k -I}k 1)),

%;(000)=%;(00), k=1,2,..,n; i=12,.,m.

If A;=A;=o, all B i(kln)=o, and we have m separate Kalman filters for

noncoupled subsystems. If it is not so, an iteration process for the correction of

B,—(k'n) in each step k must be organized. The computational burden reduces

significantly if we replace the term

B,—(n—lln) by Bi(n—ln-1)

In this case, we have an essentially recursive algorithm

%; (nln) = %; (nn)+ 57" (n)- B (nln),

where

8,-(nln)= A,-S,—"—l(n -1)- 8,-(n— r - 1)+ ZAijžj(n— I|n)+2Pij(n)Äj(n— 1),
i#] itj

B:(0j0)=0, s

and

mfj(n—lln)=:\c'j(n—l|n—l)+Cj(n—l{A}lj(n—l)+2A}i7»,-(n—l):|+
jäi

+Sj—l(n—l)-[3j(n—l|n—l)

Äj(n—l)= HJ'R]—l(y](n)—HJf](nln)), n=l, 2,

Here n represents a current measurement step, denoted in recursive parts as K .
Now we must coordinate subsystem estimations only in the current step. It

may be accomplished by a simple iteration, the initial value for X;(n|n) taken as

X;(nln) As a result, the estimate of the state of the whole system is generated in

a decentralized way by a set of subsystem Kalman filters, each for a subsystem.
The estimates from all other subsystems are taken into consideration, but not in

their full extent. In a given version, the new added measurement improves the

seguence of estimates from other filters only in the two last steps. For example,
for the n-th step, subsystem i uses estimates of all other subsystems as

sequences

{J?j(OlO)fj(lfl),...,fj(n—2|n-—2),fj(n— I|n),fj(n|n)}.
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This fact makes the decentralized filter theoretically nonoptimal, but if n is

large enough, the loss is not so significant. Moreover, from the point of view of

asymptotic behaviour, the filter gains some good properties of sliding window

filtering.

4. ADAPTIVE PARAMETER ESTIMATION

Any subsystem may include some parameters the values of which are

considered as initially unknown. We assume that only matrices A;j will not

contain any uncertainties. If the unknown parameter or parameters are localized

in some, say in the i-th subsystem, then we will try to identify its value by a set
of filters of that subsystem, each tuned for one given vector of the values. The

resulting state estimate ofthat subsystem is given as a weighted sum

N

% (k)= x;(ai,r’klyk)' P(ai,rlyk) »

r=l

whereN is the number of filters of subsystem i; J?,—(ai„,lek) is the state

estimate of subsystem i at the given parameter value after k steps of

measurements; p(oc ,—„lYk) is the conditional probability of appearing that value,

initially given. These probabilities are recursively updated as the new

measurement is added to the seguence of measurements. It is already assumed
that if one of the probabilities tends to one and all others to zero, then the value
that corresponds to the maximal probability may be taken as a real value of that

parameter.
It is well known from basic literature that

-

P(ai,r : Yk)
C

P(ai,r ‘)’lek—l)
p(ai,rlyk)_

P(Yk)
—

P()’(k)IYk—l) :
The same is valid for all N filters of the i-th subsystem

p(oc i,rlYk) > ————Np(y"(k)lYk—l ;“i-r) ' P(“i,rlYk—l)

ZP(yi(kÄYk—üai,r)'P(ai,rlYk—l)
r=l

plai;-Mo)=pla;r); r=12....N; k=l2,.
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Here p(y,-(ijk_l;a ,—„) is the conditional probability of y;(k) at fixed

o;, and Y;_;, evaluated at the measured level. The y;(k) is normal, with he

conditional mean

3;(lek-l ;a,—„)= H;x; (k|Yk—l;ai,r)’
and with the covariance matrix

Py,i(klYk—l ;ai,r)= HiPi(klYk—l ;O‘i,r)Hi'-
These terms are available from the set of subsystem filters.

Now we can write

IPy,i(klYk—l ;ai,rxm : eXP[—Wi(klai,r)]' P(ai,rlyk—l)
poi )A AA AA ——

ZlPy,i(lek-lšai,r] e"P[‘Wi(kl(]‘i,r)]'P(O‘i,rlYk—l)
r=l

plai fYo)=plai,) r=l 2,..N; i=1,2,.,m; k=12,..

Here k denotes the current measurement step, and

“’i(klai,r)= ./y\i (k|Yk—] ;a'i,r), Py—,il /y\i(klYk-—l ;ai,r)
A

y,-(k|Yk—l §o‘i,r)= yi(k)-?i(lek-lšai,r)

5. ILLUSTRATIVE EXAMPLE

Consider a system consisting of two subsystems with the state vector of

dimension three. The same unknown parameter is located in all diagonal
elements of the state transition matrix of the first subsystem a; -ot,, and is

defined to have five possible values. For example, for

a;; =OBB, a; =Ol, R=o=ll, p(a;;)=O2, &y, =0.7+0.1r, r=1,2,..,5

the value of increasing a posteriori probability P(“1,3 In) has taken values

p(1.0/5)= 0.51, p(1.0[10)= 0.74, p(1.0]15)=0.92, p(1.020)=0.98. Thus, after fif-

teen measurements, the third parameter value could clearly be considered as the

real value.

The ratio of traces of covariance matrices of the estimation error for the

proposed decentralized scheme and the centralized optimal one increases with
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the increase of couplings of the subsystems. For the given example, this ratio
was 1.17. The decentralized state estimation step was accomplished with the
best-tuned subsystem.

6. CONCLUDING REMARKS

The proposed decentralized scheme is essentially recursive, every new

measurement vector is treated iteratively. Each iteration includes a step of

subsystem parameter identification and a step of state estimation-coordination.

The parameter estimation step could be implemented in parallel with the filters
of one subsystem and the state estimation step by the local filters of all

subsystems.
In a centralized adaptive estimation version, a set of filters of full state

dimension would be required. The amount of filters grows exponentially with the
number of value combinations the unknown parameters may take.

Decomposition results in a set of filters of much smaller dimensions, and in
the case of identification much smaller amount of them, since the unknown

parameters are localized in subsystems. But it is at the expense of some loss in
estimation optimality and of the need for some coordinating iterations.

It must be pointed out that during the iterations, no feasibility constraints are

violated, and the system could be implemented in real time. The adaptive
identification procedure may be started and stopped in any subsystem in any
time step when unknown parameter value is localized.
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SEOSTATUD ALAMSÜSTEEMIDE OLEKU JA PARAMEETRITE

ADAPTIIVNE HINDAMINE

Ingmar RANDVEE

On esitatud algoritm seostatud alamsiisteemide oleku osaliselt rekursiivseks

hindamiseks. Alamsiisteemide parameetrite viirtused voivad olla ebatipsed.
Nende tdpsustamine toimub laeckuvate mdoteandmete rekursiivsel todtlemisel
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samaaegselt oleku hindamisega. Esitatud adaptiivse hindamise algoritm v&imal-

dab oluliselt vihendada vajalike filtrite arvu (ja nende dimensiooni) vorreldes

klassikalise, tsentraliseeritud variandiga. Koik protseduurid baseeruvad Kalmani

filtri vorrandite korduvkasutamisel ning on realiseeritavad reaalaja kitsendustega
stisteemides.
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