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Abstract. The isospectral problem of quasi-uniform rods is solved by the perturbation method.

For the shape function, a series representation by the influence functions, which are the

eigenfunctions of certain Sturm-Liouville problem, is given. Similar results for non-

homogeneous strings and for the Sturm-Liouville problem are described.
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1. INTRODUCTION

The longitudinal vibrations of a straight elastic rod with the variable

cross-section A(x) are governed by the equation

(Au')'+XAu =0 (1.1)

with A = pa)2 /E, where E,p and ® are the Young's modulus, density
and frequency.

With appropriate redefinitions of A,u and A, this is also an equation
governing vibrations of a thin rod in torsion, or of an acoustic horn.

Equation (1.1) can be easily reduced to the Sturm—Liouville equation

y'+(A—q(x))y=o. (1.2)

As the cross-section function A(x) is positive, we can write

A=a2, y =au. (1.3)
Then

(Au')' = (azu' Y =2aa' u+a7u' = ay'—a'y. (1.4)

Now, if we take

al! 1 A!! 1 A!2
m——— 1.5q(x)

2A 4
(1.5)

from equation (1.1), we obtain the Sturm-Liouville Eq. (1.2).
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Two systems given by differential operators are said to be isospectral
with respect to the given regularity conditions and boundary conditions if

their eigenvalue spectra are identical.

From the inverse Sturm-Liouville eigenvalue problem of

determination of the coefficient functions in the Sturm-Liouville

equation, we know that, in general, two spectra corresponding to two

different boundary conditions are required to determine these functions

[l-4]. Thus, a single spectrum for a given boundary conditions does not

uniquely determine the coefficient function, and the same eigenvalue
spectrum is obtained from operators with different coefficient functions.

We obtain simple isospectral sets for uniform rods from the

transformation (1.3) and (1.5). For a given A(x) there is a unique g(x),
but for a given g(x) there are many A(x) [>6]. If A, is one A(x)
corresponding to a given g(x), then the general solution is

2
X

dš
A=Ayl I+b[—=—|, A(0)=1, b=const,AO[ ng(š)] O o

(1.6)

y=AOl/2uO=Al/2u.

A complete characteristic of the isospectral potential g(x) for the

Sturm-Liouville problem (1.2) with various sets of boundary conditions

is discussed in [7-10]. This analysis is extended to Eq. (1.1) in [1 12]. In

[l3] some families of rods which have a common spectrum are described.

In [!4] it is shown that for some non-uniform rods and beams, the

equation of motion can be transformed into the equation of motion for a

uniform rod or beam with the same eigenvalues.
In this paper, the isospectral problem of quasi-uniform rods is solved

with the perturbation method [ls]. The series representation of the shape
function by influence functions is given. For the influence functions, the

Sturm-Liouville problem is constructed. Similar results are also

presented for the non-uniform string and for the Sturm—Liouville

problem.

2. THE EIGENVALUE PROBLEMS FOR INFLUENCE

FUNCTIONS

Let us consider the eigenvalue problem for a vibrating rod

(Au')'+XAu =0 x € (0,7), (2.1)
u(0)=0, u(m)=o

in the case of quasi-uniform cross-section

A(x) =l+ € A(x) + €% Ay (X)+..., 2.2)
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where € is a small parameter. We will try to find a function A;(x) for
which the eigenspectrum of problem (2.1) is the same as for the uniform

cross-section A(x) = 1.

As the single spectrum is not sufficient to determine the function A(x)
uniquely, simultaneously with the problem (2.1), we consider the same

problem on the vibrating rod with different boundary conditions

(Av')'+pAv =0 x€(o,m),

V(O) =O, V'(n) =0
(23)

Now suppose that the solution to Egs. (2.1) and (2.2) — u(x,€) and

A(g) can be expanded in a power series in €

u(x,€) = g(x) +€ uy(x) +€up ()+....
(2.4)

Me)=2Xy +e +827»2+... .

We look for the solution which gives the same spectrum as a uniform
cross-section. Therefore we take here A(€)=A 5 and A =O, A ,=0,...

Substituting (2.4) into (2.1) and comparing the terms of equal powers
in €. we obtain

uo"+Ä 0“0 = 0, (2.5)

Uy =O, uo (1t) =0; (26)

ul"+7\. Oul =—(Aluo' )' -\ OAluO,
(2.7)

1) (0)=0, uy(m)=o. (2.8)

If we use Eq. (2.5), then Eq. (2.7) takes the form

(2.9)Al' uo' .

"+A ou =ul'

Equation (2.9) has a solution if the term on the right is orthogonal to

ug. Consequently,

T

[ Ar'ug' ugdx =oo. (2.10)

0

For the influence function u(' «g, let us introduce here the notation

(2.11)=uo'uo.w

Then

w=uo'*+ug" (2.12)

or using Eq. (2.5)

w=ug' 2=\ gup2. (2.13)

Similarly,
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w''=2ug" ug' -2\ oug' ug | (2.14)
or

' (2.15)w'= —4)» 0“o0 Ü0:

From Egs. (2.11) and (2.15) we can see that the influence function

w(x) satisfies the differential equation

w'+4A ow =O. (2.16)

From Eqgs. (2.6) and (2.11) it follows that the boundary conditions for

Eq. (2.16) have the form

w(0)=0, w(m)=o. (2.17)

In the same way, for the eigenvalue problem (2.3), we assume that

v(x,e)=vo(x)+evl(x)+B2v2(x)+...,
2.18)

WE) = Ro +E Iy +E2o+...
and obtain the equations and boundary conditions

V()”-HL()VO =, (2.19)

20)(2.0;‘(m) =Vo
— 0,vp(0)

(2.21)"=UIV,'

vo_AI+tÜ oM =v

v1(0)=0, v'(m)=o. (2.22)

If we take
T

[vo2ax=l, (2.23)

0

from (2.21), it follows that

T

iy =—[ Ay’ vy’ vodx. (2.24)

0

In exactly the same way as in the case of Eq. (2.10), we can introduce
the influence function

w=vq'vg (2.25)

and obtain for w(x) a differential equation

w'+4u w=o (2.26)

and boundary conditions (2.17).
Now we modify our original definitions (2.11) and (2.25) and define

function w(x) as a solution of the eigenvalue problem

w'+vw=o, (2.27)
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w(0)=0, w(m)=o. (2.28)

From our construction, it follows that {ug, ug,4 o}, and

{vO,,' Von 41 on }: are eigensolutions of this problem. Let us now show

that the eigenvalue problem (2.27) and (2.28) admit no other

eigensolution, i.e.,

{Wn »Vn }:)o — {uOn' Uon 4\ on }:)o U{VOn' Von 41 on }:)o (2.29)

Let us first note that if w(x) is the solution of the eigenvalue problem
X

(2.27) and (2.28), then the integral [wdx saves the sign. Therefore we

0

can regard this integral as nonnegative and write
x

[wax =. (2.30)
0

Substituting (2.30) in Eq. (2.27) and boundary conditions (2.28), we

obtain

6(p'((p"+:11-vq))+2(p((p"'+i—vq)')=O, (2.31)

0(0)9'(0)=0, @(m)p'(m)=o. (2.32)

From (2.30) it follows that ¢@(0)=0, and from (2.32) that either

@(m) =0 or @'(r)=o. Therefore by (2.31) we conclude either p = on

and v/4=Ag, or 9 =vy, and v/4=p,. Hence, the influence

functions {u,' uoy }, together with the influence functions {vo,' vo,=
form a complete system. As a result, we can write

W2x =Uok Uok» — Vak =Do0
(2.33)

W2k-I=Vok Vok» — V2k-1 54 ok:

Now Egs. (2.10) and (2.24) can be written in the form

T

[ Ay wadx =O, (2.34)

0

T

[Arwuldr=-by (k=12,..). (2.35)

0
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3. ISOSPECTRAL QUASI-UNIFORM RODS

Let us consider the following isospectral problem: from the identical
eigenvalue spectra of the problem (2.1) deduce the perturbation of the

shape function A;(x) for quasi-uniform rods (2.2). In view of the results

of the previous section, we must find such a function A;(x) that the

conditions (2.34) hold. '

As the set of influence functions {w, } ' is complete, an expansion of

function A;(x) in terms of influence functions w, is feasible. Thus

Al (x)= ) cywy(x), (3.1)
n=l

where
n

J.Al' w„dx

=t (3.2)

Jwždx
0

From Egs. (2.34) and (2.35), it follows that

H1
Cok =O, Cok-1 =—;t——k-—. (33)

2JWZk—ldx
0

The eigenvalue problems (2.5) and (2.6) for u, and (2.19) and (2.20)
for v, have solutions

8
.

-

UOk =Jš sin kx, Vok = \[nz sm(zLZ—l- x). (3.4)

From (2.33) we now get that the influence function takes the form

W, = %sinnx. (3.5)

Therefore
<« 4

A (==Y, =esin@k- D (3.6)
kul

7

and

Al)= 5 -kGos(2k—l)x + 49. (3.7)
k=l (2k - 1)2

Here we can choose arbitrarily the constants p; for the isospectral
problem (2.1).
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If it is assumed that the shape function A(x) must be symmetric
around the midpoint of the rod, i.e. A(T—x)= A(x), a single spectrum

{7«. m}: determines the function A,(x) uniquely. Then from (3.7) we can

see that

A (x) = Ap. (3.8)

It is obvious that if we look for the solution of the isospectral problem
(2.3) with different boundary conditions and take the shape function

A(x) as (2.2), in the same way we get

Aj(x)=—) — cos2kx +Ag. (3.9): ,š(zk)2

4. ISOSPECTRAL QUASI-HOMOGENEOUS STRINGS

Let us now consider the isospectral problem for strings. A vibration of

a string of density p(§) taut by a unit tension is governed by the

eigenvalue problem

n'"'+xpn=o §e(o,m), 4.1)

n0)=0, n(mw)=o. (4.2)

Equation (4.1) can be transformed by the transformation

g

Q)= [Pz, ME) =u),

0

:
(4.3)

1
K= ;(j),/p(z)dz,

where

A(x) = J/p(E(x)), A=K (4.4)

into Eq. (1.1).
Suppose that the density of the string is givemn in the form

pE)=l+ep (E)+&%p ,E)+... . 4.5)

We will try to find a function p {(§) in (4.5) for which the eigenspectrum
of the problem (4.1) and (4.2) is the same as for uniform density p(§) =l.

As in Section 2, we expand the eigenfunctions 1(,€) and eigenvalues
K(€) in a power series in € as in (2.4) and take x; =O, K, =0,... Now



231

exactly in the same way as in Section 2 we introduce the influence

function w(§) and get for p;(§) expansion in series by this influence

functions. But the result is achieved more easily using the results

obtained for rods and the transformation formulas (4.3) and (4.4).
Substituting Egs. (4.5) and (2.2) into (4.3) and (4.4), we obtain

XY K=], Al(x)=%pl(x), rWY (4.6)

Therefore

1) Z2 ;
p —

l—————(1)2
cos(2k — 1)§. 4.7( ° )

For the Isospectral problem of a string with boundary conditions

n0)=0, n'(n)=o, (4.8)

we get from (4.6) and (3.9)

- L Si 2kE. 4.9p 1&) E(Zk)zcos g (4.9)

Finally, we note that from solutions of the isospectral problem forrods
and a string, we can also get the solution of the isospectral problem
Sturm-Liouville equation in this case of iso-uniform potential function.
Ifwe take

g(x)=¢eq(x)+ £2q2 (x)+... , (4.10)

then from (1.5) it follows that

ql(x)=%Al". (4.11)

Therefore by (3.7), we have for boundary conditions

y(0)=0, y(r)=o 4.12)
that

q1(x) =2 pyy cos(2k —)x (4.13)
k=l

and for boundary conditions

y(0)=0, y'(n)=o (4.14)
that

g1(x)=2 Ay cos2kx. (4.15)
k=l

Here, Wy, and Aq; are arbitrary constants.
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KVAASIUHTLASTE VARRASTE JA KEELTE

ISOSPEKTRAALNE VÕNKUMINE

Leo AINOLA

Haéirituste meetodi abil on tuletatud kvaasiiihtlaste varraste vonku-
miste isospektraalprobleemile lahend. Varda kujufunktsioon on esitatud

mojufunktsioonide reana, kusjuures mdjufunktsioonid on saadud kui

teatava Sturmi-Liouville’i probleemi omafunktsioonid. Analoogilised
tulemused on toodud ka keele vonkumise isospektraalprobleemi kvaasi-

homogeense tiheduse jaoks ja Sturmi-Liouville’i isospektraalprobleemi
kvaasikonstantse koefitsientfunktsiooni jaoks. —
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