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Abstract. The paper describes a thermodynamic method for solving heat conduction

problems. On the one hand, the algorithm used is based on the cellular automata technigue
and on the other hand, on the thermodynamic laws. The hypothesis of the local state allows

us to represent every element ofa continuum as a homogeneous thermodynamic system which

can be considered as a cell. The state space of such cells is continuous whereas usually
it is assumed to be discrete. The main advantage of this method is the absence of any

partial differential equations. Therefore, the method is rather a tool for the direct simulation

of a process than for the solution of partial differential equations. Two-dimensional heat

conduction in solids is discussed as an example.
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1. INTRODUCTION

Heat conduction is a well-known phenomenon. It is the process of

energy transmissionby a medium which does not involve movement of the

medium itself.

Commonly, heat conduction problems are solved using the Fourier’s

law to a heat flux calculation [*]

¢g=—-AVT. (1)

Here, A is heat conductivity, ¢'is heat flux, and 7" is temperature.
This law holds for many media in the sufficiently small temperature

gradient range. The Fourier’s law leads to a parabolic field equation for
the temperature o

OT W

STy (2)
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where ¢ is time, p is density, and c is heat capacity per unit mass.

From the physical point of view, the heat conduction equation (2) is

questionable because it allows an infinite propagation speed of thermal

disturbances. Attempts to eliminate the paradox are not finished yet [>~*].
The simplest generalization of the Fourier’s law including relaxational

effects is the Maxwell-Cattaneo equation

oq
—4 a=-\VT (3Tõt+q AVT, 3)

with 7 the relaxation time of ¢. In this case, the evolution equation for the

temperature is hyperbolic

VR O X —

However, in most problems of heat conduction, 7 is found to be of the

order 107135 to 10719, so it is then legitimate to use the classical Fourier

rather than the Maxwell-Cattaneo equation [°].
It must be noted that the Fourier’s law as well as all its generalizations

connect a mechanical quantity ¢ with the thermodynamic temperature.
Thermodynamic concepts are introduced usually into mechanical problems
by means of the hypothesis of local equilibrium [®] or, as called by Kestin

[7], the "principle of local state". Such a hypothesis is needed to assign to

a non-equilibrium state the entropy and thermodynamic temperature of the

accompanying equilibrium state.

Thermodynamic parameters of the element are considered identical
to their physical parameters, such as mass and volume. However, some

properties of the thermodynamic parameters expose themselves only in the

Gibbsian state space. In particular, each thermodynamic parameter should

have the property to be a function of state. Such a feature is often lost

by pure mechanical description. Namely, as shown by Chen and Eu [®],
entropy cannot become a function of state in the space of macroscopic field

variables.

The interaction between elements of the continuum leads finally to

the conclusior that parameters of neighbouring elements are connected by
certain relations. At the same time, if they really interact, it should have

the influence on their thermodynamic states. Consequently, accompanying
equilibrium states of neighbouring interacting elements must also be

coupled. Thus, it is of interest to determine the relations between

thermodynamic parameters of interacting systems and compare them with

mechanical ones.

However, as noted by Truesdell and Bharatha [°], "the formal structure

of classical thermodynamics describes the effects of changes undergone
by some single body. While it allows these effects for one body to

be compared with corresponding effects for another body, it does not

represent the effects associated with two bodies simultaneously or in any
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way conjointly." Just therefore the "marriage between thermodynamics and

continuum mechanics is neither simple nor straightforward" ["].
To elaborate a thermodynamic model of heat conduction, the problem

of thermodynamic descriptivity is discussed in the second part of the paper.
The problem is to determine the consistency between thermodynamic
descriptions for the same mediumby means of different partitions. Further,
conditions of thermodynamic descriptivity are applied to the interaction

between three neighbouring thermodynamic systems. As a result, the

relation is obtained, which couples the non-equilibrium state of a system
with the states of its neighbours. An algorithm of calculation of the heat

conduction is elaborated on the basis of such a method of description.
It is presented in the third part, where a simple two-dimensional heat

conduction problem is described as an example. The proposed algorithm of

calculations is similar to cellular automata rather than to methods of finite

differences or finite elements. At the same time, it is not the proper cellular

automaton because the states of cells are identified with thermodynamic
states of elements and the rule of updating the states of the cells applied
is not artificial but follows from the thermodynamic laws. The results of

calculations of temperature distributions in a rectangular domain and some

conclusions are presented in the fourth part.

2. THERMODYNAMIC BACKGROUND

As was noted above, a problem exists in the simultaneous

thermodynamic description of two or more interacting systems. The

term "interacting" is very important. In fact, if two systems are fully
independent, we can prescribe their states as arbitrary.

We suppose that every thermodynamic system can be considered as

homogeneous, and its state is fully determined when the values of two

intensive parameters are prescribed.
To obtain the simultaneous thermodynamic description of two or more

interacting systems, we start with the simplest possible situation. Let us

consider two interacting homogeneous thermodynamic systems 1 and 2,
each of which is characterized by the same equations of state. Let the values

of temperatures 77, T>, and pressures pl, p2, be prescribed.
If two thermodynamic systems interact with each other, it is expressed

in certain interconnections between their parameters. Therefore, every
variation in the values of parameters in one system leads to a certain change
in the values of parameters in the other. Consequently, we can consider the

integrity of such systemsas a whole system. Thus, in our consideration, we

include system 12, containing both system 1 and system 2.

The problem to solve is to determine the values of parameters for the

integral systemremaining on the thermodynamic level of description.



199

Since system 12 contains both system 1 and system 2, the additivity
conditions should be valid for mass and volume

My=My+ Ms,Wz =W +. (5)

These definitions allow us to calculate one thermal intensive parameter of

the integral system, namely, specific volume v

Vi+ Vs (6)Y 2 =ge
as the function of state.

To determine the intensive state of the integral system completely, we

need to know the value of at least one more thermal intensive parameter,
namely, temperature or pressure. We define them by prescribing heat and

work for the integral system

Tl2dSl2 = TldS; + T5dS; — OQl—2, (7)

Pl2dVis = pidVi + padVa—a — W,s, (8)

where S is entropy, and OQ),_» and W,_, are heat and work of interaction,
respectively. To include the energy transport by matter, we should define

in addition

pl2dMyg = pdMy + pedMy — OF) o, 9

where u = pv + u — T's is chemical potential, and 6F}_s is the material

energy transfer due to interaction. In the case ofequilibrium, all interaction-

related quantities are equal to zero.

The latter definitions do not give us the direct method for the calculation

of temperature and pressure as functions of state even if heat and work of

interaction are known. Together with the fundamental Gibbs equation for

each system [®]

TldS;, = dU; + pldVy — pmdM,, (10)

T5dS; = dU» + p2dVa — u»dMo, (11)

Tl2dSl2 = dUyz + pl2dViz — pl2dMo, (12)
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they form the system of equations determining the values of the remaining
thermodynamic parameters for the integral system. We will try to find the

first integrals of this systemof equations, which are independent of the kind

of a process.
If we subtract the sum of these fundamental Gibbs equations for

subsystems (10) and (11) from the fundamental Gibbs equation for the

integral system (12), we obtain

õWl—z — 5Ql_2 — 5F1_.2 - dUI2 — dUI — dU2 (13)

According to the first law of thermodynamics, the left hand side of

the obtained relation is the definition of the energy of interaction between

subsystems 1 and 2

OWi_g —OQl_2 — OGS = —dE;_,. (14)

Therefore, the energy variation can be represented in the form

dUI2 = dUI + dU2 — dEI_Q. (15)

Generally speaking, we could define the energy of the integral system in

such a form a priori, however, we prefer the thermodynamic way because

it allows us to consider the interaction energy as a function of state.

Due to the additivity of energy, we can expand the interaction energy
into two parts, corresponding to each subsystem

dEl_z = dEI + dE2 (16)

and rewrite the expression for energy variation in the form

dUI2 = dUI + dU2 — dEI — dE2 (17)

The obtained condition of energy conservation is too general for direct

applications even if the energies of interaction are prescribed. To have more

convenient conditions, we use the property of energy to be a function of

state that allows us to represent its total differential in the form

oU oU e =
dU = (—) dT + (——) dV + (——) dM, — (18)

L)
u

V
)ru

oM) 1.,

where variables 7', V, M are considered as independent. Applying this

procedure to each system, we have

a(U2 + E2)) dT2+
a(U; + El)) dTy — (———ÕTg

wu
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aUlz) (õ(UI +El)>+[ —) AR ety dM-(aMI2
TV

12 OM,
&

!

(U, + E»)
»( o, TVdM2 =O. (19)

Since variables 7', V, and M are independent, all three parts of (19) are

equal to zero separately, i.e.

)
em AD a

OTz V,M T, V,M

— M) dT =O, (20)
T 3 VM

Ul,
m (õ(UI +E1)) — (Õ(Ug +E2)) |

(21)
OViz T,M

-

o
T,M 9V, T,M

o\
_ (6(U1+E1)) » (õ(U2+E2)) 2)

õMI2 T,V— ÕMI
T,V

6M2
T,V

The first of the obtained conditions depends on temperature variations
and determines the heat capacity of the integral system. The third is used

for entropy calculations. The second condition is most useful. In fact, due
to the differential equations of thermodynamics,

öU) (õS) <Bp>a 7 =1 leata -p=T ) . (23)(õV
TM V/)ru or

),

_
If the equations of state for the medium under consideration are known,
we can calculate the value of the second intensive parameter of the integral
system. Therefore, the state of the integral system is completely determined
if the energy of interaction is prescribed. All together, these conditions
ensure the equivalency between the thermodynamic description on the level
of subsystems and that on the level of the integral system. To emphasize
this fact in what follows, we call them the thermodynamic descriptivity
conditions.

It must be noted that thermodynamic descriptivity conditions (20)—(22)
do not only connect parameters of systems 1 and 2 with those of the
integral system 12, but also parameters of systems 1 and 2 themselves.

Consequently, they impose additional conditions on the thermodynamic
states of interacting systems.

As an example of application, let us consider the interaction between
three systems contacting each other as shown in the following figure:
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System 1 | System 2 | System 3

Since we deal only with thermodynamic parameters, we describe the

interaction in terms of the Gibbsian state (phase) space.
In the non-equilibrium case, we should apply the general

thermodynamic descriptivity conditions (21) to systems 1 and 2 as well as

to systems 2 and 3

(2“_l_) +(Qe_lz> 2(922) +(@) | (24)
ov /y ov ) 1 vy )y ovy)

Ous oesy
|

Ougy Oeys()o@)5)., @

where e;; is the interaction energy per unit mass for the system 7 with

respect to the system j.
It must be noted that even if the explicit expressions for the interaction

energies are unknown, we can determine the state of the system 2 in the

case of heat conduction. To show this, we represent the thermodynamic
descriptivity conditions in the form

(%) z(%> +(%_l) _<3_elz> | 26)
vy ) ÕVa / y Õv2z )r Õvi /y

Ouz\ [ Ouy deas De32(693)7*— (B”2)T+(3v2)7’ (6"3)7". e

Due to the symmetry of the problem of heat conduction, we have

no preferences between systems 1 and 3 with respect to system 2.

Consequently, their actions relative to system 2 should be equal

(%) -(?„62) =-(%) +(ž?3—2) =D. (28
61)2 T Õ'Ul T Õ'Uz T Õ'Ug T

Then we can subtract the second thermodynamic descriptivity condition

(25) from the first one (24)

Ouy _(?l"i) — 9D. (29)
Õ'Ul

T
Õ'Ug

T

The subtract can be interpreted as the total external action relative to

system 2, which results in the influence of systems 1 and 3, simultaneously.
Therefore, the magnitude of each action is the following:

p=3|(G2) - (Ge) ) o
2 6vl

T
Bv3

T
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Then we can represent the thermodynamic descriptivity conditions in terms

of the states of neighbouring systems only

Õu2) g\ el oy ol folbw
s

6’02 T— Õ'Ul
T

2 Bvl
T

Õ'Ug
T

T

_

[9us l %
— ž'fž)] 31- 56(2)-E)] = o

Thus, now we have a method for the calculation of the state of the

system if states of its neighbouring systems are known. It is the basis of

the thermodynamic model of the heat conduction process in a continuum.

This model does not contain any partial differential equations. Instead, it

includes simple rules of the updating of the states of cells as in (31). Such

amodel is realized by means of the continuous cellular automata algorithm
described below.

3. CONTINUOUS CELLULAR AUTOMATA ALGORITHM

To describe the algorithm, we consider the two-dimensional heat
conduction problem, concerning point-wise heating of a rectangular
domain.

We apply the cellular automata technique for the solution of the

formulated problem. As it is known ['°], a cellular automaton is spatial
lattice of NV cells, each of which is in a certain state at time ?. Each cell
follows the samerule of updating its state. The state of the cell at time ¢ + 1

depends on its own state and the state of neighbouring cells at time ¢. The
cellular automaton starts out with some initial configuration of cell states,
and at each time step, the states of all cells in the lattice are simultaneously
updated.

In the heat conduction problem, we divide the domain into elements,
each of which corresponds to a cell. Each element has the same size.

We determine the state of each cell as the thermodynamic state of the

corresponding element.

The essential feature of cellular automata is the rule of updating cell’s
states. Usually such a rule is expressed as a look-up table connecting the

state of a cell with its local neighbourhood.
In our algorithm, we apply a generalization of the condition of local

interaction between thermodynamic systems (31) as the rule of updating
cell’s states

) =

k+l
—

Bv,-j T

1 3“5—1,1' öu;“„„- öuž,j-l Õuf,m
39

—4|Vvt "N T\ sok, T\ot
- (32)v"—]-:j T 1v1+17.7 T /Uz,]—']— T vl,]+]. T
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In the case of solids, mechanical properties are determined usually by
means of the Young’s modulus G, and Poisson’s ratio v. Thermal properties
are taken into account by thermal expansion coefficient a. Generally
speaking, all properties of solids depend on temperature. However, in the
first approximation, we can consider them as uniform, as treated in many
applications. ‘

From the thermodynamical point of view, it is more convenient to use

the bulk modulus K, A

G

because it has the clear thermodynamical meaning, namely,

(34)õp) |
K

=

where v is the specific volume, p is pressure, 7' is temperature. The thermal

expansion is expressed in thermodynamical terms as well

1 / v

The product of bulk modulus and thermal expansion coefficient determines

another thermodynamic derivative

__.

(%) 1(ow) (p 26oK ——v(äõ)Tv(õT)p—(öT)J 09

which is immediately contained in the thermodynamic descriptivity
condition (31) in view of (23). The assumption about the uniformity of

thermal properties simplifies the rule of updating cell’s states (32) in this
case

k gk mk
—

k-1 yrk—l k-1 k-1 prk—l k-1
4oyiK T =oKTT5+ o i

K iTt

21 TR mk-1 KT AR 1S 1
+Oi Ki li +iKiaL +d (37)

In the case of homogeneous medium, all elements have the same

thermomechanical properties, and the rule of updating of cell’s states (37)
becomes even simpler. The temperature of each element is determined as

the arithmetical mean of its neighbour’s temperatures at the previous time

step .
1

Tš= H(TS) + 753 +TS3 +152), (38)

and it is fully independent of the kind of material. The calculations were

performed for the rectangular domain. The typical number of elements was

200.
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4. RESULTS AND DISCUSSION

The initial situation is given by the values of temperatures in each

cell. We suppose that in the initial situation all elements have the same

temperature 300 K. In a moment, one of the element at the boundary gets
another value of temperature (400 K) and holds it in time. This boundary
is supposed to be thermally insulated

Õ—Tfi—j
= 0, Vk. (39)

on ,

Cells at other boundaries hold their initial values

=Wy ATNI S=Th,, Vk. (40)

The results of calculations for early times are shown in Fig. 1. Here

we can see the propagation of the temperature front into the medium. For

a sufficiently long duration, the temperature distribution approaches the

steady-state one (Fig. 2).

Fig. 1. Temperature distribution by point-wise heating at early times.
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Fig. 2. Final temperature distribution by point-wise heating.

Fig. 3. Temperature distribution by point-wise heating in the case of more complicated geometry.
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As an example of a more complex situation, we consider the same

domain, from which some elements are removed. The created boundary
keeps the initial temperature. As the calculation shows, in this case, the

temperature distribution becomes more complicated (Fig. 3).

In conclusion, it should be noted that we had no need to solve any

partial differential equations to determine the temperature distribution in

the two-dimensional heat conduction problem. Consequently, the paradox
of instantaneous propagation of thermal disturbances [*] was avoided.

Reported on Fenno-Ugric Days of Mechanics in Rackeve, Hungary, on

June 18-24, 1995.
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SOOJUSJUHTIVUSE TERMODUNAAMILINE
MODELLEERIMINE

Arkadi BEREZOVSKI, Viktor ROSENBLUM

Soojusjuhtivuse probleemide lahendamiseks on vilja pakutud termo-

diinaamiline Idhenemisviis. Arvutusalgoritm baseerub iihelt poolt raku-

automaatide kasutamisel, teiselt poolt termodiinaamika seadustel. Lo-

kaalse tasakaalu hiipotees lubab pideva keskkonna iga elementi esitada

homogeense termodiinaamilise siisteemina, mida voib késitleda rakuna.

Selliste rakkude oleku ruum on pidev, samal ajal kui tavaliselt vaadeldakse

seda ruumi diskreetsena. Meetodi pohieelis seisneb diferentsiaalvorrandite

puudumises. Seetdttu on meetod pigem otseste protsesside modelleerimise

vahend, aga mitte diferentsiaalvorrandite lahendusmeetod. Rakendusnii-

tena on vaadeldud tahke keha kahemddtmelist soojusjuhtivust.
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