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Abstract. To simplify the dynamic analysis of structures supporting a moving load, the mass of

the moving load or that of the supporting structures is neglected. It is well-knownthat dynamic
stress values are influenced by external and internal damping. Their combined effects are only of

importance when the dynamic system has a constant mass matrix. This paper presents an

algorithm for the analysis of additional dynamic displacements of structures, whereby both the

effects of the moving mass and those of internal friction must be considered. The algorithm and

the numerical method were tested on examples. The factors mentioned showed important effects

which justify their consideration in the analysis ofreal structures.
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1. INTRODUCTION +

In the dynamic analysis of structures, the determination of stresses in a

structure due to a moving load is an important problem. It is well-known

that the dynamic stress values are influenced both by external and

internal damping. In [1 ] a suggestion is made to consider their combined

effect, but only in the case of free vibration and in excitation by the

harmonic forces.

An adequate numerical method for the analysis of structures with

several degrees of freedom, permanent mass matrix under external

darr3lping is described in [2 ]. The effects of the moving mass are analysed
in 21.
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This paper presents a method of analysis for structures with several

degrees of freedom exposed to external and internal damping. The

developed algorithm and the numerical method were tested on examples.
The above-mentioned factors showed important effects, which justify
their consideration in the analysis of real structures.

2. APPLICATION OF DIRECT INTEGRATION

2.1. Consideration of a moving force under external damping

The second-order linear differential equation Miu+Cu+Ku=r,

describing the displacement of structures, expresses the dynamic
equilibrium at any time in the considered time range.

Forces of inertia are expressed by Mii=f;(¢), damping forces by
Cu = fp(?), stiffness forces by Ku=lfg(¢), while r(z) is the vector of

external forces. (Matrices will be of order n.) The dynamic analysis is

intended to solve the matrix differential equation under initial conditions

ug,ug and up at a moment 7y, and once the displacements are

determined, to find the dynamic stresses.

It is advisable to solve the initial value problem by the Wilson

0 -method. Wilson assumes a linearly varying acceleration between the

moments fand r+oAr. (For 8 = 1.4, the procedure is definitely
convergent.)

In this case,

X (i —Ü ) (1)Uy =Uy '*‘W(uHeAt t)s

. . s 1 1;2 o .

Uppr =0 +U,T + že—A;(“HeAt -ür), (2)

3
. .

Hence,

Ürsgar = (—6A6t_)2(ut+9At -u)- gg‘;fit -2, (4)

u =3 (u —-u, )-2ü,- 5“Ü,.t+oAt OAt( t+oAt t) 3

Assuming r(¢) to vary linearly during this period

I+OAt = It +9(rt+At - rt)'

Displacements at time ¢ +0 A result from
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[K + (—GA%)?M + g%;C]“HeAt = Tr+o4r +

+C(9—š7u, +2ü, +9—/23£ü,) (6)

2.2. Consideration of a proportional internal damping

In the relationships above, the content of the matrix C has not been

discussed. For an external damping, the matrix can be assembled if the

individual damping elements related to the structure are known. For a

damping due to frequency-independent internal friction, the matrix of an

equivalent external damping — for different damping parameters of

individual structural units — may be assumed if the complex stiffness

matrix K, +iK,, is known in the form

K
,

using eigenvectors normalized to M of the eigenvalue problem

2
Kuvr = mvar.

Now, inlthe matrix differential equation of vibration, K will be replaced
by K,[']

For the structural units with the same damping parameters
(proportional damping), the equivalent damping matrix is

= (8)C= vMV(m—iu—)V*K and K, =uK,

where

—y?
W,

. =QV=——-4Y ; u=———4’Y2, O)ruz—yz ; Y
24+y2 4+y ,I+—4—

Here, ¥ is the logarithmic decrement of damping, ®, may be obtained

from the r-th eigenvalue of the eigenvalue problem Kv = ®*Mv for the

undamped case, while V is a matrix containing eigenvectors normalized

for M. Obviously, in the case of internal damping, the direct integration
problem has to be preceded by the solution of an eigenvalue problem. All
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these arguments must be considered in selecting the dynamic problem
solution method and using the modal analysis.

3. APPLICATION OF MODAL ANALYSIS

3.1. Consideration without damping

The differential equation Mii+Ku=r must be solved. We are

looking for the solution in the form u = Vx, where the eigenvalues and

eigenvectors normalized for M (VMYV =E) of the eigenvalue problem
Kv=o’Mv are known. (In fact, initial conditions for X are

xo =V Mug, X 0 =V*Müg.)
After substitution and multiplying from the left by the transposed

matrix V™

VMVi+V KVx=q, (9)

where

q=V'r=f. (10)

Due to orthogonality, theoretically, » single-unknown equations may be

considered. It is known that in solving real technical problems, in a

solution based on the eigenvectors, it is sufficient to involve a certain

number (m < n) of eigenvectors computable by convenient procedures
(e.g. subspace iteration) even for extended systems.

Equation r

sc',+(o%x, =dr: (11)

Accordingly,

g bridg
—[0), ,

(0Ar)? ]xrt+6At rrroar *

6 o .

+—(9At)2 Xy +
AL T, +2x,t ;

(12)

where

q’t+6At
D f't+9At ,

f’t+9At =f’t +9(frt+At _f’t)' (13)



188

3.2. The case of proportional internal damping

For proportional internal damping, differential equation of motion is

Mii +(va<L>V*K)u +uKu=r. (14)
(Dru

Using of eigenvalues and eigenvectors normalized for M of the

eigenvalue problem Kv = o*Mv
,

solution may be sought for in the

form u=Vx. After substitution and multiplying by transposed matrix
V* from the left

V*MVi + vV*MV<wL>V*Kvx +uV'KVx =q, (15)
ru

where

q=V'r=f. (16)

Because of orthogonality, » single-unknown equations may be
considered.

Equation r .

+ + = (17)= dr:-
X m%„x,XyruXy +Y®

Accordingly,

2 6 3
+7—2— +2 =[m ™ oar?

-
BAr t ]xrt+9At Irrsgar *

6 o ..

+————(9At)2 x,t +BA7 x,t + 2xrt +

+y(o,„(šž—tx,t +2%, +9%5e,t ) (18)

3.3. Computation for other than proportional internal damping or

for composite internal and external damping

In this general case, the damping matrix cannot be diagonalized by
means of eigenvectors for the undamped solution. So, inasmuch as

diagonalization is to be made in the left-hand side of the matrix equation,
the damping forces Cu =fp(f) obtained by means of the damping
matrix, involving the effects of external damping, have to appear in the



189

right-hand side of the matrix equation. The dynamic equation may be

written in the form |

V'MVi+V'KVx=q, =

q=V'r-V'Cvx =f-Hx. (19)

Solution may be obtained from Eq. (12) with

*.

qrt-l-GAt —frt+9At —h, X 1 4+oAt -
(20)

Vectors X;,9A; depend on vector x,,gp; Of elements . in Eq.

(20), requiring an iteration procedure.
The problem may also be solved without iteration. The unknowns

belonging to the subspace may be obtained from an equation system of
order m:

[D +õšH]xt+9At = fr+9ar '*'E('(BXÖ;)?X; +9%f(, +2X,)+

+(G+H)(garX, +2%, + %L%)),

where D and G are diagonal matrices, elements »of them
2

o +@—[§7+(fwymm and Y0,,,.

4. NUMERICAL RESULTS

4.1. The examined structure

In the numerical results, computations refer to a realistic structure. For
a 30 m bridge spanning, cross-section type @ simulates a bridge with

reinforced concrete, and type b a bridge with steel structure, respectively
(Fig. 1 and Table 1).

Fig.l. Arrangement of the examined structure.
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The load moving on the bridge equals 800 kN. In different cases, the

moving load velocities were assumed in the range of 0 to 50 m/s.

Internal damping had a factor Y of 0.1.

4.2. The applied numerical method

The dynamic problem was solved by modal analysis. A numerical

experiment was made to determine the number of eigenvectors needed to

achieve the required accuracy. Displacement of the structure mid-point
was tested by taking an ever increasing number of eigenvectors into

consideration. Table 2 shows the percentages of additional displacements
due to dynamic effect in the structure of type a for different velocities.

Apparently, considering five eigenvectors yields additional dynamic
displacements with an adequate accuracy.

In this case, it is not difficult to solve the equation system with five

unknowns in every time step that may be avoided by using the iterational

procedure within a given time step. The time interval in the problem was

Characteristic - Type b

Cross-section area 3.12m’ 0.4 m’

Moment of inertia of cross-section 2.13 m* 0.35 m*

Elastic constant of the material 2 - 10"kN/m’ 2 - 10° kN/m”

Poisson's ratio 0.166 0.3

Weight per unit volume 25 kN/m’ 150 kN/m™

Table 1

Mechanical characteristics of material and geometrical characteristics of structure

* including the accessory weight of the bridge deckpavement.

e 8 ]| 5— 7

10 2.4 3.9 4.1 4.3

20 4.6 6.0 6.2 6.3

30 11.3 12.3 12.6 12.8

50 16.5 18.7 18.8 18.8

Table 2

Additional displacements due to dynamic effect
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assumed as the shortest vibration time belonging to eigenvectors in the

solution, of a value At = 7 /10, as reccommended in literature.

This procedure proved to be convenient even for three eigenvectors.
However, considering only the first, the so-called fundamental vibration,
and computing the time interval as Az = 7T /10 (mainly for velocity <2O

m/s), applying a more accurate computation, the displacement is much
less than that for the given vibration pattern. Furthermore, the interval

At = Tp/100 in this case yields an adequate result.

However, this remark is only theoretical, namely, applying at least

five eigenvectors, an interval still less than this critical one was obtained.

Adequacy of the iteration procedure depends on the number of

eigenvectors considered in the analysis, on the size and velocity of the

moving mass. Using only the first eigenvector, corresponding to the

fundamental vibration, the procedure is convergent even for a moving
load of 800 kN. .

As it was shown, to achieve the desired accuracy, in the given
problem, it is advisable to have five eigenvectors. In the iteration process,
the number of iterations in a given step depends on the load velocity. For
a lower velocity, this number is lower. The statements above are

illustrated in Table 3.

4.3. Additional dynamic displacements along the structure

In the structure, dynamic effects cause dynamic displacements in

addition to those static displacements, depending on the velocity and on

the structural rigidity. There is a system of the dynamic coefficient as

illustrated in Table 4.

Force, kN |
Noof ]—t0]— s00 ]— so0 | — s00

eigenvalue Velocity, m/s

10J20|50[10 20[so [10 [20[so [10 [20 |s0

] 3 4 4 6 6 8 9 . 10 11 24 28 36

3 5 6 7° 12 13 W 53 42 . 76. -
- -

5 7 8 $ 32 34 34 - - - -
-

-

7 11 11 13 — - - - - = - - -

Table 3

Number of iterations required in a given time step of the iteration process
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This table shows the percentages of additional dynamic displacements
of different structural cross-sections for both types of structures at

various velocities for a load of 800 kN.

The aim of this paper was to develop a computation method taking
into consideration the effect of the internal damping of the structure.

Table 5 shows the results with additional dynamic displacement
percentages, ignoring the damping effect of the internal damping
(y=o.l), omitting the mass of the moving load (M;=2BOOKkN).
Examinations showed that the omission of the internal damping results in

a significant overestimation of the dynamic effect.

Place of displacement, L

m/s Typeofstructure

ete . eel
5 0.1 — 1.0 — 1.3 0.2 2.1 1.3 2.4 2.0

10 2.1 — 3.0 0.5 3.8 0.8 4.5 1.7 4.1 2.2

20 4.0 1.0 4.8 1.8 5.7 3.0 6.5 4.1 6.2 4.2

30 9.1 50 - 9.9 59 109 66 121 6.4 126 5.2

50 240 117 24.3 M4 333 14 21.3 13.1° 18.8 0%

Statical

' 329 202 627 38 862 530 101 6.23 10.7 6.55
displ., mm

Table 4

Percentages ofadditional dynamic displacements

Velocity, | Typea ] ppeb
m/s internal damping

I

5 2.4 5.6 2.0 4.1

10 4.2 - T4 2.2 3.4

20 6.2 11.1 4.2 8.4

30 12.9 17.8 5.2 10.0

50 18.8 22.5 10.8 16.3

e § Table 5

Effect of the moving load mass and of the internal damping j
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4.4. Displacement diagrams

Displacements of three different points of the structure (type b) due to

a moving load at the velocity of 30 m/s are shown in Fig. 2. +

Displacements at the mid-point of the structure for various

velocities are illustrated in Fig. 3, and the effect of internal

damping is shown in Fig. 4.

Fig. 2. Displacement at points L/4, L/2, 3L/4 of the examined structure

Fig. 3. Displacement of the mid-point at different velocities.
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5. CONCLUSION

~An algorithm was developed for computing additional dynamic
displacements of structures, if the effects of the moving mass and internal

friction are to be taken into consideration. The algorithm and the

numerical method have been tested on realistic problems. It may be

stated that the above-mentioned factors have an important effect,
therefore they must be considered in the analysis ofreal structures.

Reported on Fenno-Ugric Days of Mechanics in Rackeve, Hungary,
on June 18-24, 1995.
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OTSESE INTEGREERIMISE RAKENDAMINE VALIS- JA

SISESUMBUVUSE KORRAL

J6zsefGYORGYI

On esitatud mitme vabadusastmega vilis- ja sisesumbuvusega
konstruktsiooni analiiiisi meetod. Leitud algoritmi ja numbrilist meetodit

on katsetatud néidete varal. [lmnes, et sise- ja vdlissumbuvus avaldavad
olulist mdju ning nende arvestamine reaalsete konstruktsioonide

uurimisel on vajalik.
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