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Abstract. We gave the constitutive assumptions by supposing that theconstitutive equation has a

differential equation form by using the property of the propagation of an acceleration wave. In this

way, generally there is a possibility to apply the experimental results of an acceleration wave

caused by a simple tension. Surprisingly, the expressions of the small deformation formally appear
even in the case of finite deformations.
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1. INTRODUCTION

When we investigate the motions of continua, we should know their

constitutive equations. Different authors suggest various equations but

these can describe only some given motion of material.

This article presents a theory, which gives conditions for variables and

functions to form a real constitutive equation and not a law of a

phenomenon. When the constitutive equations are f, = 0, o =1,..., 6,
the theory is based on the following constitutive assumptions [];

a) f,, 18 a function of stress, strain and their first partial derivatives and

of coordinates x; and time ?.

b) In spite of any physically possible initial and boundary conditions,
acceleration wave propagating with the finite velocity can be induced into

the body. ;
c) There exists at least one progressive and one return acceleration

wave.

d) f,, is a continuously differentiable function of its variables.

We shall investigate the finite deformation of solids.
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2. THE BASIC EQUATIONS OF CONTINUA

In a solid body, the investigation of the propagating wave is based on

three groups of equations, the equations of motion are

the kinematic equations are

Aij D
005

(2)

and the constitutive equations are

o) =0 (a=1,2,.,6), (3)

containing the tensors of stress Y, and strain Ay, and the objective
derivatives of them, taking into consideration also the initial and boundary
conditions. ,

In (1) p is the mass density, V' the velocity of the element of the

continuum, and ¢' is the density of the body force.

3. THE ACCELERATION WAVE

Let the basic functions v*, #/, Ajj remain continuous by crossing the

wave front @(x P t) = 0, however, the derivative of them should possess
a definite jump. Thus [V'] = [£7] = [A ij] = 0, but the jumps denoted

by [ ]donotegual zero for the first derivatives of the previous functions.
In @, x

P denotes the spatial coordinates of the element of the continuum
and ¢ is the time.

The wave described before is generally called the acceleration wave.

Let the unit normal vector of the acceleration wave front be denoted by n,
and the speed of propagation according to the moving continuum by C. As

it is already known

e »PC=c vin,,
where
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In the following, the starting point is that neither Eq. (2) nor Eq. (3) is

known. Substituting some possible forms of Eq. (2) into Eq. (3), assuming
that the acceleration wave must not have an infinite speed and assuming
also that at least two positive and two negative C exist, one would take

conclusions for the constitutive equation.

4. THE COMPATIBILITY CONDITIONS

The investigation under consideration is based on the dynamic,
kinematic (see e.g. [2]), and constitutive compatibility conditions.

Let us denote the jump on the wave front by

[v'] = vi(—c+vpnp) = —Cvi, [tlj] = uijnj
and

[Aij;k] 7j% A [Ä,-,] = -a;;C

where V', p”» A; are the generalized wave amplitudes.

The dynamic compatibility condition is

pCy' =

-p”

v = —un..
j

(4)

Having determined the strain tensor A, its derivative and the stress rate

can also be obtained. Taking this expression into the form of Eq. (2), the

kinematic compatibility condition can be given

1 pa
a;; = (--);; H ~ (5)

U 2pC2 UP q

The Table summarizes some forms of Eq. (5).

5. CONDITIONS OF THE CONSTITUTIVE EQUATIONS

An arbitrary objectivederivative is denoted by a star "*"
over the given

quantity, for example, £ / denotes the stress rate. Let us consider now that

fy in Eq. (3) depends also on the derivatives of the basic functions,

* 75 . e *

fa(t U’ Ql]a AU’ q,], ) — O’ (6)

ij
_

pilj pq
—

»PI! Pg . AAD

where O —qutl;’l and qij—bij tflqu;l are physically objective

tensors. Taking fa before and after the wave front, the constitutive

compatibility conditions are obtained, because it is the difference of
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Deformation
o

: Derivative
or strain

small strain material derivative

ajj
: Euler strain Lie derivative

Cij
Cauchy deformation Lie derivative

-1

Finger deformation Jaumann derivative
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them [2]. Assuming that fa and its derivatives are continugus, the

differences F, satisfy ä“"F
= 0. F, depends on the function —a—% =0;

(k =1,...,4), that Py =3 and on 17', ]l'], äij' If, for example,
x

ij

_ o [spq

then the constitutive compatibility conditions consist of six equations. This

is a first order nonlinear system of equations for the unknown . The

system of equations does not explicitly contain @, but includes T
and a” amplitudes and is compatible if the Poisson bracket satisfies

ol Efi".‘a_FE] =O, (7)[Wg"õ? 9x 29,
where

ar, aF| oar,alo ra or, a[a™)
99,"ar'i 09, 207005 orV 90, oAU 995

°

aFaa[qu]
997095

denoting the derivativesofF, by sai Paij' EZ
,

and RZ

2F
) !ot [*'J k

J

PR MÕEI 99, 2|"
5 m][a,\j’ +

aukl axfiJ+P°‘ij Q9+3[Q{|Bp.kl
o W

,

*
7/ »

Now one can express Eq. (7) in detail. Let us assume that ¢ Vo= Lt)l] is
*

¥

the Lie derivative of ¢ ,and A
Y

denotes Lie derivative, too. In Eq. (7),

Poisson bracket must be equal to zero if

Sopght’ +Eqa;i = 0, (8a)

ikj P 4 ij, pgk
=2Paiijqp. +Rabi]. yy =O, (8b)

and

kl k j k k

Sapg!t B+l 8)~Eg(a,8; +a;8;) = 0, (8c)
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where a;; denotes the Euler strain tensor. By varying the deformation

tensor and the objective derivatives, expression (8c) changes, too. The

form of Eq. (8a) does not change, Eq. (8b) depends on the selection of B
and b quantities. Now the equation of the wave propagation can be

obtained from Eq. (6) if the "*" Lie derivative is applied,

3 ilk ij[205,,,C” ~2pP,; Byn,C* + (Ea(n8,+nnd,)~
k

jj

, vwl
28gttt 8, +17)) C+Raby nyn(n, (8,,-2a,) +

nõ, —2a, )) ]W = 0. (9)

The function up7 is not identically zero, thus the determinant of the

matrix in the bracket must -be zero. To make the description of the

determinant easier, the index function [3]

p if =

Y = Y(pq) =
,

e
is used.

p+g+l if p#gq .

Then Eq. (9) is
-

[a =O, (10)

that is

det({...}oy) = 0 (11)

is the wave equation. The exPression {...},, allows us to introduce a

generalized acoustic matrix [*]. Generally, the wave equation is the 18th

order expression in C.

For the investigation of the acceleration wave, in the case of a simple
tension and small strain, the wave equation is

S;C? + S,C* +E;,C + E, =O. (12)

In this case, Eq. (9) can be connected to Eq. (12). The quality of the roots

of Eq. (12) can be investigated by using Sturm series. When only the real
roots are taken into consideration:

— 1 positive and 2 negative roots exist for any

S 2 if SI>O,EI<O,E2<O,

2 positive and 1 negative roots exist

SI>O,S2¢O,EI<O,E2>O,
or

$,>0,5,<0, E;>o,E,>o, 55>35,E,,
or
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$,>0,5,>0, E;>o,E,<o, SS>3S,E,,
or

SI>O,SZ=O, EI<O,E2>O,
— 1 positive, 1 zero and 1 negative roots exist
if

§;>0,5,#0, E;<O,E, =0

or

§,>0,8,=0, E;<o,E,=o

Using the previous conditions, the (6 x 6) matrix coefficient of C 3 in
Eq. (9) is positive definite, while the matrix coefficient of C? can even be

(positive or negative) definite, indefinite or zero. Similar conclusions can

also be found to the other matrices. It is particularly obvious if

Ho 1
is attached to Eq. (9).

Reported on Fenno-Ugric Days of Mechanics in Rackeve, Hungary, on

June 18-24, 1995.
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LAINEDUNAAMIKALE BASEERUVATE OLEKUVÕRRANDITE

TEOORIA

Gyula BEDA

On eeldatud, et olekuvorrand on esitatav diferentsiaalvorrandi kujul,
kasutades kiirenduslaine leviku omadusi. Uldiselt kehtib see lihtsa tdmbe

poolt tekitatud kiirenduslaine puhul saadud katsetulemuste kohta.
Ullatuslikult selgus, et ka Idplike deformatsioonide korral esinevad

formaalselt viikeste deformatsioonide avaldised.
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