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Abstract. The loss of (Liapunov) stability of a dynamical system can be performed in two

ways: by a divergence or by a flutter. The classical setting of the localization leads to a

nongeneric case, when this classification is impossible. By introducing dissipative terms into

the constitutive equation, the stability investigation can be performed as an investigation of

a dynamical system. That means to study the real parts of the eigenvalues of differential

operators defined by the fundamental equations of the continuum. Such an investigation was

performed in an one-dimensional case. The results show that the classical static localization

condition means a divergence instability. We also found a condition for the flutter type ofthe

loss ofstability in the field of velocities.
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1. INTRODUCTION

Material instability problems like the localization of plastic deformation

use different stability definitions. Most of them are generalizations of

the Hill’s concept ['] or the Drucker postulate [2]. When a solid body is
considered as a dynamical system [*] and a state of the body is a solution

of it, the stability of this state means the stability of the solution. In this

case, the obvious stability definition is the one of the theories of dynamical
systems, the so-called Liapunov stability [*]. This is a kinematic definition,
quite similar to the one used by Eringen [°].

The loss of material stability is in close connection with the singular
state of the acoustic tensor [®]. Then there is a change in the nature of
the acceleration wave-speeds. One of the possibilities is that one of them

is zero, the other is the appearance of a complex conjugate pair. In the
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case of a zero wave-speed, there is a stationary discontinuity, and when the

squares of the two wave-speeds are complex conjugates, it is called a flutter

[ B]. A similar classification is known for the ways of the stability loss

of a solution of the dynamical systems [?]. It is called divergence when

the linearized part of the differential equation representing the system has

a zero eigenvalue. When there is a pair of pure imaginary eigenvalues, it

is the flutter. Now the question is: how these two interpretations relate to

each other.

In this paper, the solid body is considered as a dynamical system. Our

aim is to investigate and classify plastic localization as a loss of stability of

it.

2. BASIC EQUATIONS OF THE LOCALIZATION PROBLEMS

Denoting the position of a material point in thereference and the current

configurations by X; and z;, the position vectors are R = X;G;,andr =

z;g;- As usual, the Cartesian tensor notation and the implied summation of

the repeated subscripts are used. The deformation gradient F is ;

õa:j.FjJ=S)TJ
The equation of motion without volume force is

d2u;
SiK,K = p—ch' (1)

where Sk is the first Piola—Kirchhoff stress tensor, Skk
is the divergence

of it and u = R — r is the displacement. The classical setting of

the equations of material instability problems [* I°] uses a simplified rate

constitutive equation in the form

S'jx = KszMFzM, (2)

where Fj)s is the deformation gradient and Kk;ys is the fourth-order

tangent modulus tensor. By substituting (2) into the rate form of (1), the

motion of the continuum can be described by

d?
p dtz;j " (KjKlM'Ul M), ,K' (3)

The coefficients Kxps are considered here as piecewise constants. Now
two kinds of questions can be asked: one on the existence of strain

localization and the other on the stability of the material.

To answer the first one means to search for the condition of the existence

of a thin band in the material, in which the rate field quantities differ from
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the uniform values outside ['* !']. By denoting ( )® and ( )°, the values

inside and outside the band are

(Fim)® = (Fi)° + @imo, (4)

ns are the coordinates of the vector showing the orientation of the band and

q; is the amplitude of the jump on the band. The rate of stress equilibrium
implies ; ;

nk((Sjx)’ — (Six)°) =O,

that is, with (2) and (4)

(nk(Kxim)nm) @ = 0. (5)

There are nonzero amplitudes in (5), if and only if

det [nK(ijM)nM] = 0. (6)

For the second question, the stability of a state of a material should

be investigated. In dynamics, a state of a system is said to be stable if

its motion remains in an arbitrary small neighbourhood of it by applying
sufficiently small perturbations [*]. The same concept of stability is used

by [®] for continua. Thus for dynamic stability, the role of perturbations
and the role of the propagation of disturbances is essential. It means that in

stability investigations one should concentrate on the wave propagation.
Equation (3) has a wave solution in the form

v; = g exp(i(nxkXk — ct)), (7)

where nx shows the direction of the wave front and 7 = \/(—1). InEq. (7)

the wave speed c determines the stability. When ¢? > 0, Eq. (7) is stable,
when ¢? < 0, it is unstable ['°]. By substituting Eq. (7) into Eq. (3)

—pc2q,- exp(i(nkXk — ct)) = (Kjxkim)nmnkq exp(i(ngXk — ct))

1s obtained. Hence

((K jKIM)NMNK — Pczõjz) q =O.

Thus the condition of the existence of a wave solution of nonzero
amplitudes reads

= 8det [(KjKIM)nMnK — pC2õjl] =O, ( )

that is, the stability depends on the eigenvalues of

(Kixim)nmnkr].
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When all of them are real, the material is in a stable state. When there is
at least one pair of complex or imaginary eigenvalues, there is an unstable

state. The loss of stability is connected with the appearance of nonzero

imaginary parts of the eigenvalues. Unfortunately, at localization this

appearance is a very strange one. Then the appearing imaginary eigenvalue
is zero (£O2). Thus the classical setting of the localization problem results
in a coexistent flutter and divergence. Such a situation cannot be typical,
because the flutter and divergence are the two possible distinct ways of

the loss of stability of a dynamical system [*?] and the coexistence is a

degenerate case.

In the following section, by using the basics of the theory of dynamical
systems, a possibility of decoupling them from each other is treated.

3. RATE DEPENDENT MATERIALS

Let us introduce the notations of the theory of dynamical systems
into this localization problem ['*]. For further simplification, small

displacements are assumed. In its abstract form, Eq. (3) reads

d*v

2>
= 1) (9)

Here, v = (v, vq,v3) is a vector of the coordinates of the velocity field

satisfying the boundary conditions, and f(v) is a differential operator
defined by the left hand side of Eq. (3). Equation (9) defines an infinite

dimensional dynamical system. The stability of a state of the continuum
means the Liapunov stability of a solution v(¢) of Eq. (9), that is, by
perturbing the system, the velocity field v:(¢) is sufficiently close to the

unperturbed one v(¢). The stability investigation of some solution of

equations like (9) starts with a transformation into a first order equation by
introducing new variables w = [w}, w?], where wj = v;, w} =v; (j =

1,2, 3), and with the linearization at a solution (at v = 0 for the sake of

simplicity) \

dw

The eigenvalues of the linear operator Df show the stability properties.
Unfortunately, an equation like (9) cannot give strict results for stability,
because the set of eigenvalues consists of pairs ++/a and when a > 0 there

is instability, and when a < 0 the real part of the eigenvalues is zero. For

conservative or linear systems, this implies stability but nonlinearities can

ruin it. Moreover, Eq. (9) is not structurally stable in the sense of [l4], that

is, any small perturbation can cause qualitative changes of the solutions.

To achieve structural stability, as the simplest possibility for small strains,

alštrlašin rate dependent material is used instead of Eq. (2). In a general form

[7 2]

Ojk = K}kszlm + kazmélm, (10)
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where the coefficients K., K7y, are considered to be piecewise
constants. Then the equation of motion is

pv; = K„j„vk,„. + Lnjkl'bk,lm

where Krl;jkl = % (K„jk( + Knjlk) and Krzzjkl = % (Lnjlcl + Lnjlk)—
Introducing new variables

w; =w, w=o (j=1,2,3), (11)

the equation of motion is

1
—

»,;2

2 1
wJ l— wj,

2
W; =

5(KnjkiWn + LnjkiW in)-
By introducing linear differential operators

Kiwor =K, 'klivk Lipvi=lL 'lcl—õz—vk
7 - ° ” zzi

and

ij k ]

the equation of motion is

d v

ä[w;-,wš] =L [wš-,wš] . (12)

The Liapunov stability depends on the real part of the eigenvalues A of

the linear operator L. The eigenvalue equation is

L [w},w;‘-’] = A [le-,sz-] . (13)

When an eigenvector
-1 =2[w,.,w,.]

is substituted into the equation of motion (12)

d.
, 1 -ä[wš,wš] = ) [w},wfl

is obtained with the eigenvalue ). The solution of it is

[}, w?] €. (14)

Having all the eigenvalues and eigenvectors, a solution of the equation
of motion can be given as a linearcombination of functions Eq. (14), thus

the stability requires negative real parts for all eigenvalues. From Eq. (13)

2
.—

XYopl

i

Aw;,
1 1 2% oo
S (KikWi + LjuWr) = Awj,
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then by substituting the first group of equations into the second and using
Eq. (11) ; ;

2 A A

(p)\ v; — Kjk'l)k — Äij'Uk) =0 (15)

is obtained, which is a system of the second order partial differential

equations with boundary conditions. Thus the state of the material is stable,
when for all values of A, at which there exist nontrivial solutions of Eq.
(15), ReX < 0.

Note that by omitting the dissipation in Eq. (10) (K?j,c,m = 0) there

are only \? terms in Eq. (15), thus having solved the eigenvalue equation,
real or pure imaginary solutions can be obtained. In the case A% > 0, there

is instability (), otherwise the nongeneric pure imaginary situation as

stated at the beginning of this part.

4. ONE-DIMENSIONAL PROBLEM

The application of the stability condition of the previous section needs
to have the solution of the boundary value problem Eq. (15). In a general
three axial case, it cannot be done analytically. This section deals with a

one-dimensional simplified problem to show how the dynamical system
theory of Section 3 works. In a one-dimensional case from Eq. (10)

o = Ké+ Lg,

and the equation of motion (12) is

K L- ;
Vit = —VUgg + —Vtzz, , (16)

P P

where subscripts denote derivatives with respect to z and ¢. Let us study the

stability of a stationary plastic state of a rod of length / loaded uniaxially.
Introducing notations (11) w; =v,wy = v, the equation of motion in the

operator form is

W 0 1 W 1

W 2 põrž põr?)] (W2

and the boundary conditions are w;(0) = w,(0) = w;(l) = wy(l) = 0.

Thus the eigenvalue problem (13) is

ka vab
p922 . p822 W92 . W2

or

Wy = Awl, | (17)

K62wl L32w2
e ei)== W». 18
p 0z?

+
p O0x?

- (18)
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Substituting Eq. (17) into Eq. (18)

K 2w 2

__2l + Aéš—u.jl — 22
pOz p Orx2

1

with the original notations

Kõv LÕW
»

—p'w'i'/x;-ä;ž = X*v (19)

is obtained. In the one-dimensional case, Eq. (19) is the form of Eq. (15).
The stability investigation means to study the signs of the real parts of the

possible A values, at which Eq. (19) has a nonzero v solution. Searching
for the solution in the usual form v(z, t) = C(t)e*®, '

+ baA+ CI,C!2 =0 (20)

is obtained, where a = "—'š—, b= % have positive values. By using the

real solutions, coefficient a is determined by the boundary conditions,

v(o,t) = A(t) cos0 + B(t)sino = 0,
91

v(l,t) = A(t) cosal + B(t)sinad =O. - (21)

Then (21) can be nontrivially solved for A and B, if

ak':kTfl-, k=l72’

To study the stability of the system, one should look at the real parts of

the solutions Axl, Ax 2 of (20)

—bag + /ba — 4aaz (22)Akl,2 =

m

In the generic case, no eigenvalue has a zero real part, which means

structural stability. Moreover, when a,b > 0, the real parts of all the

eigenvalues )\, Ax 2 are negative, thus the plastic state is Liapunov stable.

In the case of the so-called divergence instability or static bifurcation ['?]
one of the eigenvalues is zero. Then Eq. (20) should have zero solutions,
that is,

2 =0a 0 =

Divergence instability means that the loss of Liapunov stability is

connected with the loss of the uniqueness of the solution. While ax £ 0,
the condition of the divergence instability is

a=£=o
p
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being obviously identical to the condition of static localization.

The other possibility of the loss of stability is that the pairs of complex
eigenvalues cross the imaginary axes. In such a case, Eq. (20) has pairs
of imaginary roots. The condition of this so-called dynamic bifurcation or

flutter instability [*?] is

b=o or £=O.
p

In this case, the uniqueness persists at the loss of Liapunov stability, but an

oscillatory behaviour appears in the velocity field.

Summarizing this part, let us look at what happens on loading a ribbon

type body, at which the uniaxial case is a suitable approach. On the stress-

strain diagram, the tangent modulus K and consequently a of Eq. (22)
decrease (Fig. 1). At the beginning, a is large, thus all the eigenvalues
Akl,2 are complex values with negative real parts. That means stable wave

solutions of Eq. (16). When a decreases, it reaches for some k

=

b*ax
4

and then the k™ wave dies out. The last wave disappears at

b2n?
a =

—m—

After that thereare no waves, but the material remains stable. The stability
is lost at a = 0. The divergence instability in this case is equivalent to

the stationary discontinuity mode [®], because the loss of stability happens
when there is no wave solution. Figure 2 shows the stability chart in the

plane of the material parameters L and K.

In conclusion, in case of a wave of an infinite length, the appearance
of the wave and the flutter stability boundary are the same. This result is

similar to the one in ['7].

Reported on Fenno-Ugric Days of Mechanics in Rackeve, Hungary, on

June 18-24, 1995.

Fig. 2.Fig. 1.
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DÜNAAMILISTE SÜSTEEMIDE EBASTABIILSUSE

LOKALISEERUMINE, FLATTER JA DIVERGENTNE

EBASTABIILSUS

Péter B. BEDA

Diinaamiliste siisteemide stabiilsuse kadu (Ljapunovi méttes)
voib toimuda kahel viisil: divergentse ebastabiilsuse voi flatteri kaudu.
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Klassikaline lokaliseerumisiilesande piistitus viib erijuhule, kus selline

klassifikatsioon ei ole voimalik. Viies olekuvorranditesse dissipatsiooni ar-

vestavad liikmed, võib stabiilsuse uuringut kisitleda diinaamilise siisteemi

uuringuna, s.t. tuleb uurida pideva keskkonna fundamentaalvorrandite

poolt määratud diferentsiaaloperaatorite omavéirtuste reaalosi. Selline

uuring on teostatud ühemõõtmelise juhu jaoks. Tulemused niitavad, et

klassikaline lokalisatsioonitingimus tdhendab divergentset ebastabiilsust.

Samuti on leitud flatteri tiiiipi stabiilsuse kao tingimused kiiruste viljas.
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