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Abstract. Using a reasonable physical assumption, a simple model of the hammer felt was

developed. The model is in a good agreement with an experimental force versus deformation

relationships obtained both for various numbers of hammers and felt stiffnesses. Such a

model allowed us to calculate the hammer-string interaction forall notes of the grand piano by
evaluating only one parameter — the Young’s modulus of the felt material. As a result, we can

choose the hammers for a piano by matching the masses of the hammer and the felt stiffness.

Consequently, this will improve the quality of the instrument.
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1. INTRODUCTION

In the grand piano, the hammers are significant in the sound formation.

Therefore, choosing a hammer for a certain piano model is very important.
A good set of hammers with matching parameters gives the quality of the

instrument. This choice is based on the mathematical simulation of the

hammer-string interaction. For this calculation, however, the exact values

of the physical parameters of each hammer must be known. The grand
piano has eighty eight hammers, and all of them are different — they have

various stiffnesses, radii of the curvature, masses, etc.

Some parameters can be obtained by simple measurements. So, we may

suppose that such parameters as the radius of the head curvature and the

mass of the hammer are known for all the hammers of the grand piano. But

itis very difficult to say anything about the stiffness or the Young’s modulus

of the felt material because the construction of the hammer head is rather

complicated. For this reason, there are no universal mathematical models
suitable for all hammers.
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2. PROPERTIES OF FELT STIFFNESS

The first model of the piano hammer was proposed by Ghosh ['] who

considered felt as a material obeying the Hooke’s law in the Hertz form

F(u) = Е, (1)

where

F' —the forcedue to the felt compressed by the collision upon the string;
u — felt compression;
E — a constant;

p — the compliance nonlinearity exponent.
The real samples of hammers had values of p between 1.5 and 3.5 with

no definite trend of p from bass to treble as discussed in [%]. The value

of p = 1 gives a simple linear system, but it has the unmusical property
because loud notes are equivalent to amplified soft notes. Values greater
than p = 1 are not entirely due to the peculiarities of the felt; the geometry
of the rounded contact would already give p = 1.5 (known as the Hertz’s

law) even for locally reacting Hookean material. The value p > 3 probably
causes too much contrast between a very harsh tone colour when playing
fortissimo and a very blend when playing pianissimo. Hall [*] uses this

nonlinear model of the felt in the Hertz form to model the piano string-
hammer interaction and obtains a better agreement with the earlier data than

using his previous calculations, based on a completely linear model.

Suzuki and Nakamura ['] describe the properties of the hammer

more explicity. They present the results of measurements of dynamic
relationships between the hammer felt deformation and the applied force.

Three types of hammers — soft, medium and hard, acting on the three

various strings, were discussed. Our tests of the hammer felt model were

based on the experimental data presented by Suzuki and Nakamura.

All the previous piano hammer models are static (in addition to [* ])
and deal with one hammer, the parameters of which must be obtained

experimentally by static or dynamic loading. These data are not suitable for

others hammers, and at least eighty eight experiments are needed to prove
the data for all hammers.

The model of the hammer felt presented here is based on

the known geometrical parameters of the hammers and describes the force-

compression characteristics of all the grand piano hammers by evaluating
only one parameter — the Young’s modulus of the felt. In this case, the value

of the Young’s modulus is limited and is changed approximately from 160
MPa for soft and medium hammers to 260 MPa for hard hammers.

Based on the presented model, we can calculate the interaction between

the hammer and the string for all the numbers of the grand piano keys and

choose the masses of the hammers and felt stiffnesses in order to improve
the quality of the instrument.
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3. HAMMER FELT MODEL

When we derive a static hammer felt model, we must describe the

deformation of the felt. Under the acting force, it depends only on the

stiffness parameters of the felt material, identical for all the hammers of

the grand piano, and on the geometrical domain of interaction between

the hammer and the string, as shown in Fig. 1. Also, we assume that the

thickness of the felt is rather large as compared to the felt compression.
Thus, the existence of the hammer woodkernel may be neglected. In Fig. 1,
the following notation is used: u is the dent of the felt; d = Эт is the string
diameter; R is the radius of the curvature of the hammer head.

When the hammer strikes, the string deforms the felt and the kinetic

energy of the hammer is transformed into the deformation energy of some

volume of the felt. We assume that this energy is concentrated mainly on

the region of interaction of these two bodies — the cylindrical hammer and

the cylindrical string (shaded in Fig. 1), and that the density of this energy
is constant in the volume of interaction.

Now we can find the value of the force causing deformation

oU (u 2)
Here, U(u) is the energy of deformation proportional to the energy density
of some volume V'(u) of the felt.

Suppose that the total deformation energy is proportional to the dent of

the felt and to the volume of deformation

U(u) =UpuV(u), Uy = const. (3)

Fig. 1. Geometry of the hammer-string interaction: A — cross-section across the string, B

cross-section along the string.
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Because rather rough assumptions are used here, the volume of

deformation is approximately equal to

V(u) = 2RS sin® 8, (4)

where S is the area of the region of interaction shaded on the cross-section
(A) in Fig. 1

S = šr')'q(u) (5)

and

20 — sin 2a, ifu<r
(6)q(u) = { л + 4[(и/т) — I], ifu>r.

The angles « and /3 are shown in Fig. 1.

Taking into account that the felt compression is small, i.e., u «< Й, ме

obtain

cosa=l—= (7)
T

and

. Al >2U
sin“” 8 =

T (8)

The volume of deformation is now calculated as

V(u) = 2uriq(u). 9)

Substituting Egs. (3), (4) and (9) into Eq. (2), we find the force acting оп

the string due to the felt deformation

, дч
10F(u) = 2Uor2u(2 + %—Õu—) g(u). (10)

It is easy to show that the second term in the parentheses is restricted for

any u '

so that the two terms in parentheses in Eq. (10) may be substituted by one

constant.

If we introduce deformation or nondimensional compression y of the

felt according to

Ци
и=т (12)

and replace the arbitrary constant U, by the expression

2 —l/2

R 51 ) (13)

3 udg 4
L 2ci
4
-

дди
”

п
(11)
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then we obtain

d d N!

F(y) = E—-(y) ER (1 + 272') yq(y), (14)

with the function

_

[ 2агсвтф — 2(1 - 2у)ф, ify <0.5
a(y) ‘{ 8y + 7 = 4, ify >0.5, (15)

and

ф = 2\/у(1 -у), (16)

where now the constant £ is a Young’s modulus of the felt material (or the
constant directly proportional to the Young’s modulus). The constant Uy in

the form of Eq. (13) was obtained in the following way.
According to the Hertz’s law, the force acting on the two connected

elastic spheres with radii R; and R, respectively, is given by

_4Е _(№_)1/22 (17)Flu) =

за - „) (R1 + R

where E is the Young’s modulus and o is the Poisson’s ratio. As mentioned

above, the value p = 1.5 of the compliance nonlinearity exponent is not in

agreement with the experimental data obtained for the real felt deformation.

By choosing Uj in the form as in Eq. (13), for the small deformationy < 1,

Eq. (14) gives |
\/§E т Е /2

5/2’ (18)Flu)= — (r+R) .

which is similar to Eq. (17) and so Uj in the form Eq. (13) can be used by
the analogy of the Hertz’s law to describe the hammer-string interaction as

in Eq. (14). In this case, the value of the compliance nonlinearity exponent
p = 2.5 in Eq. (1) and that obtained here are in good agreement with the

experimental results discussed in [?].

4. MODEL AND EXPERIMENT COMPARISON

There is only one way to judge the success of the present model. It is

the comparison with the experimental data. In [*] the relationships of the

dynamic force versus deformation are presented for hard, medium and soft

hammers Ag, A 3 and Ag (key numbers n = 1, n = 37andn = 73,
respectively). These nonlinear relationships show a significant influence

of hysteresis characteristics. Because the model presented here is rather

simple and ignores this effect, only the increasing parts of the experimental
characteristics are discussed. It is also suggested that the unloading and the

loading of the felt are similar.
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Unfortunately in ['], such parameters as the masses of the hammers
and their dimensions are not described. Thus, the comparison between
the experimental and the theoretical results is not always correct. Table |

shows the primary parameters ofthe grand piano (the parameters known or

those easy to measure).

Figure 2 illustrates the comparison of the experimental data and the data

calculated using Eq. (14). The values of the Young’s modulus used for

plotting curves in Fig. 2 for soft, medium and hard hammers are presented
in Table 2. It is clear that a sufficiently simple model presented here is in

good agreement with the experimental data and can be used to describe the

hammer-string interaction.

It is easy to see that Eq. (14) consists of two parts: the first multiplier
depends on the parameters defined only by the key number, and the

second one depends only on the dent of the felt. Like in [7], the second

multiplier may be approximated in the polynomial form or in the form of

the usual power-law dependence [* * ]. The first good approximation of

the function f(y) = wyg(y) in the interval 0 < y < 0.6 is given by е

function

fi(y) = (2.49° + 9y°), (19)

and the second approximation of the function f(y) is

f2(y) = =8 (20)

Мо{с$

Рагатес!сг r
String

Note frequency Л Нх 28 220 1760 262

Length L, mm 2016 777 115 620

Distance of hammer from

ncarest string end [, mm 243 91 8.1 74.4

Diameter d, mm 49 1.075 0.875 1.025

Tension T, N 1629 834 774 670

Lincar mass density u. g/m 130.7 7.1 4.7 6.3

Наттег

Ксу number п 1 37 73 40

Mass m,g 13 10.6 8.2 8.9

Radius of the head R, mm 17 И 5 8

Table 1

Primary parameters of the grand piano strings and hammers
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So, the force-compression relationship of the hammer felt may be

described as

F(y) = Fy(2.4y* + 9y°) (21)

or

F(y) = Fy 7.5y%3, (22)

PD

Z
—

=

QL
o
L

ja
C

o

8
©
о
£
>
Е
Õ

nondimensional compression of the felt

Hammer
Key number

n=1 170 160 160

п = 37 260 160 208

п = 73 170 160 240

Fig. 2. Force-compression characteristics of the felt for: A — hard hammers, B — medium

hammers, and C - soft hammers. Crosses, circles, and squares denote the experimental data

points [4]. The solid, dashed, and dotted lines are the calculated curves for each of the key
number.

Table 2

Young’smoduli of the felt E, МРа
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where

d 3 —l/2
B ks (1 +&

7 э
. (23)

Egs. (19) and (20) are also rather good representations of the

model developed and may be used to describe the force-compression
characteristic of the piano hammers. _

The values of the Young’s moduli in Table 2 demonstrate a sufficiently
good agreement with the experimental data both for the hammer number

and the felt type. The value of the Young’s modulus for the medium

hammers is constant and nondependent on the key number. Although
Table 2 shows that the hard A 3 hammer is really exceptional, the same

is valid for the hard hammers. As referred to above, some parameters
of the hammers used in the experiments are not described in [*]. In the
manufacture of the piano hammers, various types of felt materials are used,
and so the hammers vary in dimensions. The types of hammers studied in

the experiments are not specified. We may suppose that the radius of the

curvature of the hard A; hammer was not 11 mm but 7 mm, and then the

Young’s modulus of that hammer is equal to 170 MPa also. Probably for

the same reason, the radii of the curvature of the soft A; and Ag hammers

were not 11 mm and 5 mm but less, and the Young’s modulus of the soft

hammers is constant and approximately equal to 160 MPa.

Table 1 also demonstrates some parameters for the note Cy. These

values were used in [®] for the numerical simulation of the piano string
excitation. The force-compression characteristics of the hammer were

described in the form

F(u) = Ku? (24)

with K = 142.3N/mm”, and p = 2.5. The values of these parameters
were obtained experimentally. The model of the hammer felt developed
here allows us to describe the force-compression characteristics. Figure 3

shows two of the force-compression characteristics for note Cy. The solid

line is obtained by using Eq. (14) with £= 122 MPa, and the dashed line is

calculated from Eq. (24) using [®] and Table 1. The agreement of these two

curves is rather good. It is obvious that a very soft Cy hammer was used in

these experiments.
Thus, the model of the hammer felt presented here in Eq. (14) enables

us to calculate the hammer-string interaction for all hammers of the grand
piano from the note Ay to the note Cg and to match the hammers ог 10

calculate the spectra of the string vibrations.

5. CONCLUSION

A new version of the grand piano hammer felt model was proposed.
This model is in good agreement with the experimental data presented
by different authors. It enables us to describe all the numbers of the
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hammers with the various felts (soft, medium and hard) of the grand piano.
According to the model, these felts differ in one parameter — the Young’s
modulus of the felt material. For a set of the grand piano hammers, the

Young’s modulus has a constant value.

This result implies a way to improve the quality of the grand pianos by
matching the parameters of the hammers by numerical simulation of the

hammer-string interaction.
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KLAVERI HAAMRI VILDI LIHTNE MUDEL

Anatoli STULOV

Liahtudes pohjendatud fiiiisikalistest oletustest on vilja tootatud haamri

vildi lihtne mudel. Mudel on heas vastavuses nii erinevate numbritega
haamrite kui ka erineva jdikusega vildi puhul saadud katselise jou ja
deformatsiooni vahelise seosega ning vOdimaldab arvutada ainult iihe

parameetri — Youngi mooduli alusel kontsertklaveri igas sdlmes haamri ja
keele vahelise vastastikmoju. Selle alusel saab valida konkreetse klaveri

haamreid sobitades haamrite massi ja vildi jdikust ning parandada seega
instrumendi kvaliteeti.

ПРОСТАЯ МОДЕЛЬ РОЯЛЬНОГО МОЛОТКА

Анатолий СТУЛОВ

С использованием — разумных — физических — предположений
разработана простая модель рояльного молотка. Эта модель хорошо
описывает зависимость силы, действующей на молоток, от величины

деформации фильца как для различных номеров молотка, так и

для различных жесткостей фильца. Модель позволяет рассчитать
взаимодействие струны и молотка для всех нот, варьируя только

один параметр — модуль упругости фильца. Такая процедура дает

возможность подбирать молотки для любого рояля, улучшая качество

звучания инструмента.
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