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Abstract. This paper introduces the attributed automata (AA) as a formalism for executable

specification of knowledge, using regular syntax with attributes to represent contextual

relations and the semantic properties of concepts. AA are treated as a generalisation of

a state transition network, with attributes and computational relations attached to states

and transitions, respectively. The attributed automaton model provides additional tools

for the restructuring of large systems to reduce their conceptual complexity for simpler
implementations. The paper discusses the general properties, composition/decomposition,
and minimisation of AA.
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1. INTRODUCTION

Regular and context-free structures are classical and can be efficiently
implemented as models of data structures. Automated computing is often

successful to an extent adequately regular and/or context-free (surface
or deep) substructures are extracted from the remaining structure of the

data. Formal models integrating thesestructures with others and supporting
restructuring of data, analysis and implementation are methodologically
important. The modifications of models known in the theory of formal

languages and automata (e.g., finite and pushdown automata and state

transition systems) and the corresponding declarative formalisms (e.g.,
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attribute grammars and graph grammars) are widely used to achieve

effectively executable specifications.
This paper discusses attributed automata (AA) as an extension to

state transition systems. Different modifications of finite automata and

state transition systems use additional memory and computation rules to

handle contextual and semantic information [!73]. All such extensions

are covered in a problem-oriented manner, where the basic formalism and

its properties are treated as a secondary matter. This paper studies the

attachment of memory to a state transition network. The paper focuses

on how the adding of attributes will affect the expressive power and

composition/decomposition of networks.

The attributed automaton model provides additional tools for

restructuring large state transition systems, allowing one to

reduce the number of states in a transition system and the conceptual
complexity of their specification. Due to their properties, AA have

interesting applications in pattern recognition, language processing and in

the specification of distributed systems. Here the composition theory ofAA

and different specific models supporting AA applications provide a basic

framework for technological environments.

The next section introduces the concept of an attributed automaton and

discusses some special cases and the expressive power. It is followed by
a motivation for composition/decomposition of AA and an overview of

morphisms on AA and problems of behavioural equivalence of AA. In the

final section, some related engineering problems are described.

2. ATTRIBUTED AUTOMATA

2.1. Definition

An attributed automaton is a state transition system with attributes

and computational relations attached to states and transitions, respectively.
Generally speaking, domains of attributes are free, and they can either be

of a primitive type or a higher type with a complex structure. Eventually,
this allows us to ignore the input tape of the classical finite automaton. The

input can be modelled by distinguishing a special (input) attribute and the

transformation functions. This will be discussed later in greater detail.

Definition 2.1. An attributed automaton is a transition network M =

(S,T), where:

® S is a set ofstates with two distinguished subsets: Sy C S, the initial

states, and Sy C S, thefinal states;

every state s € S is associated with an attribute a, that is a variable

over the domain As;

e T C S x S is a set oftransitions ,

every transitiont = (s, s') € T is associated with
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— an enabling predicate P, : A; — bool and

— a transformationfunction f; : Ay, — Ag.

Both the enabling predicates and transformation functions must be

computable, i.e., partially recursive functions.
In an initial state, with an initial attribute value z € A,,, the

functioning of the automaton M is considered as a successive change
of the current state. Transition from one state to another is possible
only if the corresponding enabling predicate is true. Every transition

includes an evaluation of the attribute of the next state, using the associated

transformation function.

Similar to the classical automata, one can define a pair (s, a), where
s € Sanda € A, as a configuration of the automaton M. Let us denote the
set of all possible configurations of the automaton M by Cj,. We suppress
the subscript M if confusion is unlikely. In particular, (so,z) ап (5;, у)
with so € Sp and s; € Sy are called initial and final configurations,
respectively.

Now, the automaton M can be considered as a formal computing device

with its operating cycle running over multiple configurations.
Definition 2.2. The тоуе from a configuration to the next one is a

binary relation — on the set C such that c — c iffthere exists a transition
t = (s,s') € T that P,(a) is true and fi(a) = bforc = (s,a) and
c = (s',b).

To illustrate it, we can represent AA as transition graphs, where

nodes correspond to the states and arcs to the transitions. The states are

labelled by the associated attribute and the arcs by the enabling predicate
in brackets (the predicate, which is equally true, can be omitted) and the

transformation functions as in Fig. 1.

In the framework of the AA model, we can consider a traditional finite

automaton [*] as a special case. In this kind of an attributed automaton,

Fig. 1. Transition graph.
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all states have the same attribute domain (i.e., the finite input and output
alphabets) with appropriate specific operations (see also section 2.3).
Moreover, a finite automaton can be presented as an attributed automaton

with one state [°]. On the other hand, an attributed automaton with finite

domains of attributes can be presented as a finite automaton [°].

2.2. Behaviour of attributed automata

AA can be used for modelling of transformational as well as interactive

systems. In the first case, AA behave like functions for computing
one object from another. Here it is important to have a reachable final

configuration because only the terminating transformations are desirable.

Without loss of generality, we can limit ourselves to AA with no

transitions going out from the final states. Alternatively, we can introduce

a new final state s’ with its attribute domain Ay, = A, for the original final

state s and outcoming transitions ¢y, ts, . .

~ t, with corresponding enabling
predicates P,, P,,, . .., P,. The state s should be excluded from the set of

final states. Introduction of a new transition ¢ = (s, s’) with the enabling
predicate P;(a;) = (P, (as) V P,(as) V ...V P, (as)) completes the

construction. The automaton terminates its computations when it arrives

at a final configuration (s’,y) € Sr x A,.. The attribute value y is

called the output of this computation. Similarly, z is called the input if the

computation started from an initial configuration (sg, ).
The attributed automaton M transforms the input z into the output y

if the reflexive transitive closure —* contains a pair (¢, ¢x) of an initial

configuration ¢y = (sp, z) and a final configuration ¢, = (s, y). In other

words, there should be a sequence

(sO, Zo) M (51,21) —
.. > (Sk, Zk),

where sg € So, sk € Sp,T = Zo € As,,andy = 3x € As;,. We will denote

this expression by M(z) = y. |
The automaton M can terminate for a given Iпри! х 10 sоте поп-бпа!

configuration if there is no valid enabling predicate. On the other hand,
the computations may diverge without reaching any final configuration. In

both cases, we say that the output of the automaton M is undefined for the

input z, and we denote it by M(z) = L.

Definition 2.3. The attributed automaton M implements a function
f iff M(z) = f(z) holds for any x. The automaton Mis called

transformational.
Definition 2.4. The attributed automaton M is deterministic iffor any

three configurations c,,cy,c3 € C, the relations ¢; h ¢y and ¢; — c3
imply c, = c3. Otherwise, the automaton M is called non-deterministic.

Non-deterministic transformational AA implement stochastic

functions. Termination is not important for the so-called interactive

systems. Even when they terminate and produce an object y from an
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object z, it is much more important for the system to react to changes in

its environment adequately. Generally, these changes cannot be predicted
for a system which recognizes them by checking periodically (i.e., reading
data from the environment) whether special events happened. The system
responds by performing internal changes which, in turn, are registered by
the environment as some internal event of the system. Frequently, internal
events cause the generation of output data (or some "piece of result") to the

environment.

Let us call the AA simulating interactive systems above interactive

AA. In this case, the sequence of internal events (i.e., transformations of

attribute instances) must synchronise with external events (i.e., events in

the environment). This provides a trace of the computations to characterise
the behaviour of the interactive AA. We define the sequence

TTGCG(M, Со) = Coflclf2C2 .. .

where for any : > 0, the moves c;; — с; сап take place according to the

given transitions ¢t; =(s;_l, s;) forcg =(SO, %0),¢1 = (51,21),... € C,
and cy is an initial configuration. We shall call the Trace(M, co) a trace

of the internal behaviour of the attributed automaton M. Traces may be
infinite for interactive and diverging transformational AA.

Following the behaviour of AA with internal traces is practically
impossible for larger systems. For an abstraction, internal events are

usually classified as externally observable or non-observable. Observable
events communicate with an environment, for example, the association

of input and output of data. In our model, the communication between

an automaton and the environment can be implemented as a side-effect

of some transformation functions. Let us denote by trace(M) =

firs fin, - - -
Obtained from a T'race(M, c,) by deleting all configurations and

transformation functions with no observable effects. We say that trace(M)
represents an external behaviourof the automaton M. In Section 4, we will

compare AA by their external behaviour.

For transformational AA, I/O-pairs (z,y) or the functions they
implement are exhaustive representation of the external behaviour.

Traces of internal behaviour can be viewed as paths in the data-flow

diagrams of AA. The data-flow diagram of the attributed automaton M is

the graph M = (C, T), in which the possible configurations C' are formed

by a set of vertices and 7 C (C x C) by a set of arcs. Неге, (сl,со) € T

iff ¢; — cy. The data-flow graph M of an automaton M = (S, T) is finite

iff the set of states .S and all attribute domains A, are also finite.

Further, we sometimes need to keep control over the states whose

attributes are not being evaluated, when studying the behaviour of AA by a

data-flow diagram. For that reason, the following projections of the relation

Tare used !:

1. The functions [(X) and 7(X) are sets of left and right components of a set of pairs X,

e.g., l(X) = {z|(z,z) € X}.
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e a transition relation: T C C x [(С) апа

e an attribute relation: o C C x r(C).

Thus, 7(c) = 5' ап a(c) = biffc — ¢/, where ¢ = (¢,b).
Next, we shall outline the problems related to the executable

specifications in the AA framework:

e expressive power of AA;

e internal behaviour of AA, homomorphisms on AA;

e externally similar behaviour of AA, simulating attributed automaton;

e minimisation of specific types of AA.

2.3. Attributed automata as recognizers

A language recognizer is an application of an AA model. This provides
a key to the indirect estimation of the expressive power of the formalism.

For language recognition applications, we need a specialisation of the

attributed automaton, where attributes ofstates have one component / over

domain ¥* (strings in the input alphabet ¥) and operations head : £* —

» and tail : ¥* — ¥*. These operations are commonly defined as:

head(¢) = tail(e) =¢, head(aw) =a, and tail(aw) =w,

where a € %, € is an empty string, and both of these functions can be called

from the enabling predicates as well as from the transformation functions.

Let us supposethat a recognizer has only one initial and one final state. Any
attribute of the initial state except the component Г 15 sе{ 10 а fixed value.

The initial value of I is a string to be accepted. The specialisation can be

defined as follows.

Definition 2.5. A language recognizer is an attributed automaton

М = (5, Т, $O, z, ), where

e Sis a set ofstates; every state s € S has an attribute with compo-
nents ai, as, . ..,a; and I over the domains A3, A3, ...,A;,X%,

respectively. In short, we will use a® and A® as a list af, a3,. . ~ a;_
апа а product A} X Aj X ...X А%, respectively,

e T is a transition relation as in Definition 2.1.;

e 3o € S is an initial state;

® 1 € A® represents initial valuesfor attributes a*°;

®е 5; Е 5 isafinal state.
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A tuple (s, a’, I) is a configuration of a recognizer M. This correlates
to the concept of configuration of AA in a general case. In fact, the attribute

value is rewritten by its first level components. Thus, the definitions in

Section 2.2. can be easily modified to specify the behaviour of a recognizer.
We leave these modifications as an exercise for the reader.

Definition 2.6. Let Mbe a language recognizer. The language
accepted by M is the set ofstrings

L(M) = {w € £*| (so,z,w) —* (s7,oa,€)}.

The value a is the meaning of the string w in the language L(M).
Example 2.1. Figure 2 shows a language recognizer for binary

numbers. In short, an enabling predicate P(I, 'a') = (head(l) = 'а’) 15

represented as labela of the corresponding arc in the transformation graph.
The symbol { represents the end of the string.

Such an automaton accepts all binary numbers with a fractional part, if

necessary, and outputs their decimal values as an attribute of the final state

F. This uses the well-known language of Knuth’s example for attribute

grammars [’], but transformed for right linear grammar.
The external (observable) behaviour of the recognizer of the language

L(M) can be expressed by the semantic function R : ¥X* — A%,

implemented by the automaton M. For instance, in the last example
R('1101.01') = 13.25.

This model of the attributed language recognizer can be generalised by
ignoring initialisation of attributes in the initial state. Then, these attributes

are free parameters and should be given together with the input string. The

recognition function will obtain the form R : A%, ¥* — A%/, which

defines the semantics of the accepted word, depending on the context given
by the first argument.

Fig. 2. Recognizer of binary numbers.
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2.4. Expressive power of attributed automata

In practice, a transformation function of an attributed automaton can

be any partially recursive function. Thus, we can easily represent a Turing
machine by an attributed automaton with one state and one transition, and

with a Turing computable function attached to that transition. In other

words, the formal power of the attributed model is that of the Turing
machine. Specific cases of attributed recognizers can be compared with

respect to their expressive power.
The class of the so-called primitive AA is studied in [®]. A primitive

attributed automaton has natural numbers or tuples of natural numbers

as attribute domains. The set of enabling predicates and transformation

functions is restricted to checking whether the attribute components are

zero or non-zero, and to computing succeeding and preceding natural

numbers. Every partially recursive function appears to be implementable
by a primitive attributed automaton.

Definition 2.7. The language recognizer is called a simple tape-
controlled attributed automaton ifffor any transitiont = (s, s') its

e enabling predicate depends only on the input attribute 1:

P, : ¥ — bool;

e transformationfunctions do not depend on the input attribute I:

Д : А° — › А’.

Clearly, if all attribute domains except the input attribute I are finite in

the language recognizer M, one can construct a classical finite automaton

M' = (S',T") with states S’ = {(s,a®)|s € S,a® € A®} and transitions

T = {(01,62)|Cl = (31›0’81)102 — (32)a82))cl € SI,CZ € S,7P(sl,sz)(a') —

true,a € L}. Thus, the following is straightforward [°].
Proposition 2.8. The simple tape-controlled AA with finite attribute

domains A® are equivalent tofinite automata.

In general terms, attributed recognizers can accept some context-

sensitive languages as shown in Fig. 3. Thus, the expressive power is

interesting in the context of specific cases of attributed recognizers and in

that of the power of attribute domains.

3. COMPOSITIONS OF ATTRIBUTED MODELS

State transition machines are widely used in software engineering
for modelling the behaviour of a system. As a means of natural graph
representation, state transition machines provide intuitively understandable

descriptions of small systems. Problems will appear when specification



147

of a system consists of more than 20-30 states. Larger descriptions lose

their clarity mainly because of the flat structure of state transition diagrams.
To minimise this drawback, it is necessary to introduce hierarchical

specifications, where machines of reasonable size are used on every level

of abstraction. For example, the structure theory of sequential machines [*]
describes how and when complex sequential machines can be realized from

interconnected sets of simpler machines and how these simpler machines

are related to the original one. In general, the structure theory of state

transition machines describes the patterns of possible composition of a state

transition machine from smaller machines. The importance of machine

structure theory is in the fact that it provides a direct link between algebraic
relationships and the implementations of component machines. The same

is a motivation to develop the compositional theory of our formalism.

There are several extensions of the concept of finite state automata with

memory. AA can be distinguished among these extensions by allocating
this memory locally to states. There is no global memory used at all. This,
together with the local definition of transformation functions, might help to

compose/decompose an attributed automaton.

Let us summarise the structure theory of AA. In general, the

composition problem of an attributed automaton can be stated as:

How and when can a complex attributed automaton be implemented by a

network of simpler AA, and how are these component automata related to

the automaton under consideration?

The composition studies have emphasised several specific cases of

transformational AA [!°~!?]. There are two main compositions оЁ

transformational AA with one initial and one final state as studied

previously (Fig. 4):

e a serial composition, where automata M and M’ are connected by
"pasting" together a final state of M and the initial state ofM";

e a hierarchical composition of AA, where a transition function of an

attributed automaton is implemented by another attributed automaton

(or even by the same attributed automaton, in the case of direct

recursion).

Fig. 3. Recognizer of the language £ = {a"b"c" | n > o}.
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The hierarchical composition of simple AA can be used to specify the

parsing of Dyck languages. In this case, the regular structure of the string
is represented by transitions controlled by the enabling predicates, and the

balance of parentheses is governed by the attributes. For every type of

parentheses, one attributed automaton is used that calls another one, when

another type of parentheses appears. Figure 5 shows AA for recognition
where two types of parentheses are used.

In terms of software engineering, data structures must be as simple as

possible. In our last example, only simple attributes (natural numbers)
rather than attributes with tree structure are used to explain the balance

of parentheses. Note that with such a single attributed automaton it is

impossible to implement Dyck languages with more than one type of

parentheses. This emphasises the importance of the composition theory of

AA.

In this context, it is also significant that every CF-language is acceptable
by a system of simple AA with primitive attributes. This is based on the

well-known theorem [!?]:

Theorem. For every CF-language L in alphabet %, there exist a Dyck
language Lp, a regular language R in alphabet &' and a homomorphism
h:%¥ — X such thatL= h(Lp N R).

The serial composition andsuperposition of AA and the "minimisation"

studied in [®] create a fundamental set of compositions for transformational

AA. In addition, one can introduce a number of more complex
compositions where states of automata are "pasted" together in several
states. The object is to develop a concept of a mathematically well-founded

general composition, which would cover all the known ones as particular

a) serial composition:

b) hierarchical composition:

Fig. 4. Composition of attributed automata.
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Сгаттаг: 5 --> $5 1 () 1(5) 1[ ] I[s]

cases. Here, an algebraic theory of general composition of AA is under

development. The wreath product of AA is introduced to achieve a general
composition, at least for tape-controlled simple AA [°].

For interactive AA, some other types of compositions can be used, such
as parallel compositions with different kinds of synchronisation, disjoint
union, external and internal choice, action hiding, relabeling, and their

timed equivalents (for real-time applications). A preliminary version of the

composition of interactive AA is presented in ['%].

4. SIMULATION OF ATTRIBUTED AUTOMATA

Another way to keep an automaton at a reasonable size is to minimise

its number of states. It is always possible to compose some succeeding
transitions (together with intermediate states) into one by analytical
transformations of the predicates and functions involved. The ultimate

goal is to reduce the structure of an attributed automaton globally into one

a) Counting of parenthesis ’(’ and ’)’: ¢’ = AU (c)

b) Counting of parenthesis ’[’ and ’]’: ¢’ =AI I(c)

Fig. 5. Implementation of the Dyck language.
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state and one reflexive transition. On the other hand, this makes efficient

analytical transformations less feasible or non-existent in a general case. In

the engineering context, the reduction of the automata should not destroy
the conceptual meaning of the states, so that the resulting automaton

remains understandable and exhibits the regular structure of the underlying
system. Thus, we are looking for the reduction of AA with respect to the

unification of some similar states. In any case, the optimisation should

result in an automaton with an external behaviour equivalent to that of the

initial automaton.

In this section we discuss the simulation of an attributed automaton

by another attributed automaton. For this purpose, we use the line of

the structure theory of traditional automata [*]. First, we define AA

homomorphism and simulation notions, and then we introduce quotient
automata. On this theoretical basis, we can develop the composition
methods of AA, by creating minimisation algorithms. For simplicity, here

we describe only deterministic AA.

Eventually, the behaviour of AA can be followed on data-flow graphs
M = (C,T), which represent computability relationships between con-

figurations. Usually these graphs are infinite. For practical reasons, we

must analyse the behaviour of an attributed automaton at the level of its

states. Our principal interest is as follows:

® How do the computational relations on configurations influence the

control of an attributed automaton?

e How will structural changes of the automaton influence computations
at a lower level?

In our comparison of AA at the level of the structure of automata, we

discuss behavioural homomorphism (e.g., isomorphism and equivalence)
and whether the corresponding relations between data-flow graphs of these

automata exist.

4.1. Internal view

Definition 4.1. Let M = (S,T) and М' = (s',Т') be deterministic

AA. Attributed automaton M is behaviourally homomorphic to attributed

automaton M' iff there is a homomorphic function g : Cpy — C)yp that

makes thefollowing diagramcommutative

AA M and M' are behaviourally isomorphic if the homomorphism g

Cm — Cm is a bijection.
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In other words, there is a behavioural homomorphism from the
attributed automaton M to M’ if there is homomorphism between their
data-flow graphs:

9(T(c)) = T'(g9(c)), Vc € См.

Let g be a homomorphism from the set of configurations C), of the

automaton M = (S, T') onto the set ofconfigurations C) of the automaton

M' = (S',T"). The following binary relation p on the set of states S can

be used to minimise the attributed automaton M.

Definition 4.2. The states s, and s, are related with respect to the

homomorphism g : Cyy — Cm iff there exists an isomorphic mapping
h : As, — As, thatfor any two configurations cy = (51,а) Е См апа

c 2 = (s2,h(a)) € Cm the homomorphism g gives the same value:

9(е1) = 9(c2)

foranya € A;,. Let us denote this relation by p.

As an immediate conseguence, for the isomorphic h in the definition

above, we get the following statement.

Proposition 4.3. The relation p is an eguivalence relation.

Proof. We treat the blocks of the partition, i.e., eguivalence classes
of S as states of the quotient automaton M/p = (5,,T,). Any state of

the quotient automaton M/p is an equivalence class [s] of S with attribute

domain A, = А,.
To define transitions for the quotient automaton M/p, consider a state

[s] € S, and its attribute value a € A,. The next state of M/p is given by
[7(s, a)], and its attribute is given by a(s, a). Here, 7 and « are projections
of the data-flow relation 7. In the following, we denote by 7' and o the
same projections of the data-flow relation 7" for the automaton M’.

When we classify the states of an automaton, we should verify against
Def. 2.1. whether the introduced transitions are predicates and attribute

transformations functions. This can be applied to our model as follows:

Proposition 4.4. The quotient automaton M[p is well defined.
Proof. Any transition ([s;],[s']) of the quotient automaton M/p is

independent of the choice of the class representative [s]. Suppose thats, €

[sl] for some configurations ¢; = (s;,a) € Cuy, c 2 = (82,h(a)) € Cyu,
where ап isomorphism h maps A, to Ay, and forany a € Ay, : g(c;) =

g(c2). According to the homomorphism g between Cy and Cw we also

have

9(7(51,a),a(51,a)) = (7'(g(sl,a)),& (g(s1,a))),

9(7(52, h(a)), a(s2, h(a))) = (7'(g(s2, h(a))), &' (9(52, h(a)))),

9(7(51,a), (sl,a)) = g(7(s2, h(a)), a(s2, h(a))),

i.e., the next configurations in C), for states s; and s, with the same

attribute value a are mapped by g into the same configuration in C;/, thus
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they belong 10 the same class [sx] on S of M. Hence, the transitionfunction

T, of the attributed automaton M/p is well defined.

Let M and M’ be AA the behaviour of which is similar with respect
to the homomorphism g : См —› С, where Cyw and Cw are sets

of configurations of the machine M and M’, respectively. The following
theorem states that in this case the behaviour is isomorphic to the behaviour

of the quotient automaton M/p.

Theorem 4.5. Let g : Cm —— Cm be a homomorphism for
deterministicAAM and M'. Then M' is behaviourally isomorphic to the

quotient automaton M/p.
Proof. For automata M/p and M’, let us introduce a mapping f :

См/р —› Cmi such that f([s],a) = 9(s,a), for any c = (s,a) Е См.
The mapping f is well defined due to the properties of g considered above.

For f to be an isomorphism, it must be a bijection and a homomorphism.
Let ¢ = (s',a') € Cppr. Then ¢ = д(с) Юог sоте с Е См, where ¢ =

(s,a). The automaton M/p has a state [s], and it contains f([s],a) = ©.

Consequently, f is a mapping onto.

To demonstrate that f is one-to-one, suppose /([sк], а) = f([s], a’) for

вотеа € A,, anda’' € A,,. Then g(sk, a) = g(s;, a’) and, therefore, states

sk and s; are in the same class [si] = [s].
Now let us consider transitions, starting with the configuration ¢ =

(s,a) € Cp. The next configuration for ([s],a) in M/p is defined for any
a € Ay, as the pair ([7(c)], a(c)). The next configuration for f([s],a) =

g(c) is ('(g(c)), o (g(c))). Moreover,

f([r(c)}, ale)) = g(7(c), alc)) = (7'(g(c)), о'(9(е))).

Consequently, the corresponding configurations proceed under f into

corresponding configurations, and therefore f defines a behavioural

isomorphism from the automaton M/p to the attributed automaton M’.

4.2. External view

Next, we focus on the external behaviour of AA, i.e., we only consider

the evaluated attribute values or observed computations and ignore the

homomorphism of the control structures of automata. Again, let us

consider a deterministic automaton M = (5,7) and its quotient
automaton M' = (SB',7) = M/p. Let F denote the mapping
that transforms М to M'. Theorem 4.5. shows that АА М апа М'

have (because of isomorphisms between attributes of equivalent states

of the automaton M) equivalent internal behaviour. This is illustrated

in Fig. 6, where a fragment of dependencies between attribute values

18 represented. The nodes ay, a,, ...present different attribute values.

Attribute domains are encircled by ovals labelled by the names of the

corresponding states. The structures of both an attributed automaton M



153

and its quotient automaton M’ overlap. An initial automaton has states

labelled by s, sl, . .

~
whereas the labels of states of the quotient automata

are [sl],[s4),... . Thus, an automaton M has possible configurations
Cm = {(30‚00)‚(30‚01)‚(31‚02)‚(31‚03)›(33‚04)‚---›(36‚015)}°
The quotient automaton has е set of configurations Cw =

{([Bl], o'2)› ([3l]› аЗ)› ([34]› 0'8)’ ([34]› o'9)› ([3s]› 0‘10)› ([3511 0‚11)‚ ([3s]› o'l2)}'
In Fig. 6, transformation functions of the automaton M are labelled by
fl, fa, - .. and transformation functions of its quotient automaton M’ by
Р, Е5,....

Let us show an example of an internal trace of computations of the

automaton M: :

Ттасе(М, со) = (SO, @) fI(S4,as) f2(ss, a10)f3(S2, as) fl(se, @ls) - - .

FI)F2I

Fig. 6. Data-flow of the structured attributed automaton.
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for co = (so,ao). In Figure 6, Ше Ттасе(М, со) 15 represented by
(black and thin) arrows. The transform JF defines the following correlation

between the configurations of two automata. The mapping f in the proof
of Theorem 4.5. is a projection of the transform F:

.Т((з,-,а‚с)) — ([sj]val)v

where the states; is selected as a representativein the eguivalence block,
containing a states;. It means that [s;] = [s;], and a; = hi;(ax) for an

isomorphism h;; form Ay, to A;;, used in the definition of the equivalence
relation p. For instance, the initial configuration ¢y is transformedby F into

co = ([sl], ko) = ([sl], a2). Applying the function F to all elements of

the T'race(M, cy), we obtain the corresponding trace of computations at the

quotient automaton M':

Trace(M',cy) =

= ([sl], a2)Fl([s4], as)F2([ss], a10)F3([sl], as) Fa([ss], al2) - - .
The Trace(M’,cp) is indicated by bold arrows in Fig. 6. Here, the
transformation functions of M’ are compositions of a transformation

function of the automaton M and a corresponding isomorphic mapping h;;;

Fi = fsohsy
F 3 = f3ohy,
В = feohss

Let us note that all component functions f; and hy; above should exist
because of homomorphism between C); and Cyr (see Def. 4.2.).

To verify and compose AA, we need operations which are substitutive

with respect to the external behaviour, as this guarantees the automation
of the composition/verification processes. The following definition refines
this concept for unary operations.

Definition 4.6. The operation F over a class ofAA A is substitutive if
for any automaton M € A and any (external) execution trace trace(M,c;)
thefollowing is valid

F(trace(M, cy)) = trace(F(M, c)).

In the formal example above, we can see that the simulating operation
JF is substitutive for transformational AA up to the isomorphismsAy ;. The

second components of the configurations in the traces Trace(M, cy) and

Trace(M', c;) are isomorphic, and so, as well for final configurations. That
means that if a deterministic attributed automaton M computes y from z,

Феп М'(х’) = у' 15 valid for some isomorphic mappings h;(z) = z’ and

ha(y') = y.

The situation is different for transformational automata. Letus define

all transformations fl, f2,- --
tobe observable. Then

trace(M) = hi fafafa---
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and

trace(M') = f5f2f3f6....

Thus, the external behaviour of these two automata can be equivalent if

the pairs of transformations (f, f5) апа (Л, 6) have the same "externally
observable effect”. Another possible way 10 have equivalent external

behaviour of M and M’ is to define an equivalence relation p on the set

of states S so that s;ps; iff in addition to the requirements of the Def. 4.2.,
As; = A,; and identity function stands for isomorphisms h;;. It is evident

that in this particular case F; = f; for any transformation. We call this

particular case of the relation p "identity respecting".
The following statements are generalisations of these two observations.

Proposition 4.7. The simulation mapping Я : М —› М/р 5

substitutive in the class oftransformational automata.

Proposition 4.8. The simulation mapping ¥ : М —› М/р
is substitutive for the class of interactive automata if p is ап "identity
respecting" relation.

5. CONCLUSIONS

AA have proved a useful formal model of an engineering tool for

software specification and implementation. These applications have

significant results and a strong theoretical foundation. The recognition
of ECG signals is discussed in [!*!'l4] With AA, we have

combined statistical and syntactic pattern recognition methods. An AA-

based analyser of auditory brainstem responses ['°] is used in medical

practice. Attributed models of communication protocols are described in

the research report ['?], where communicating entities are modelled by
interactive AA.

The applications above indicated the following research problems:

e specification language of AA, designed for some particular problem
domains (for biomedical applications — in ['® ], for protocol
specification applications — in ['2]);

e tuning methods for AA (learning of AA);

e composition/decomposition methods and tools for AA.

In addition to the application areas mentioned, the same formal model

could be successfully used in natural language processing (e.g., compare
the method of ATN in ['®]) and graph-based problems (e.g., modelling of

flows in public traffic, routing of mobile phones). It seems reasonable to

develop a proper concept of AA as an engineering tool. In the report [!?],
the first attempts at this were made by means of the NUT system. On the

one hand, this permits a comparison with other formalisms (in particular,
with Tyugu’s computational frames ['7]). On the other hand, AA is a
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simple and useful means to organise one’s ideas when evaluating complex
problems. For engineering, the graphical implementation environment

needs to be developed as well.

With a suitable environment for the specification of AA, the simulation

of several practical systems is straightforward. We need to develop
additional regular structures as the basis for AA. In all applications, this
abstraction still has to be made by a human. Obviously, in many cases,

it will be the most powerful method. It is worth investigating AA in

the context of machine learning of AA and in the context of generative
programming. ;
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ARVUTUSTE ATRIBUUTMUDELID

Merik MERISTE, Jaan PENJAM

On kisitletud teadmiste ja arvutuste esitamise uut formaalset mudelit —

atribuutautomaati (AA). AA on 16pliku automaadi iildistus, kus automaadi

iga olekuga seotakse 10plik hulk muutujaid e. atribuute ja Iра Ше-

minekuga kaasnevad semantilised teisendused. AA vdimaldab kirjeldada
kontseptuaalseid teadmisi moistete regulaarse siintaktilise struktuuri baasil,
atribuute kasutatakse moistete kontekstist sdltuvate omaduste ja tihenduste

spetsifitseerimiseks. AA mudel voimaldab restruktureerida keeruliste

siisteemide efektiivselt realiseeritavaid spetsifikatsioone ja vihendada

nende kontseptuaalset keerukust. On vaadeldud AA iildisi teoreetilisi

probleeme ning AA kompositsiooni/dekompositsiooni ja optimeerimise
kiisimusi.

АТРИБУТНЫЕ МОДЕЛИ ВЫЧИСЛЕНИЙ

Мерик МЕРИСТЕ, Яан ПЕНЬЯМ

Рассмотрены атрибутные автоматы — новая формальная модель

представления знаний, основывающаяся на их атрибутированном
регулярном синтаксисе. Атрибутами представляются контекстуаль-
ные свойства и семантика описываемых концепций. Атрибутный
автомат является обобщением конечного автомата, состояниям

автомата приписываются атрибуты — переменные и переходам —

семантические действия. Атрибутный автомат как формальная
модель предлагает дополнительные средства для реструктурирования
больших систем, способствуя TEM CaMbiM —упрощению концеп-

туальной сложности, спецификации и повышению эффективности
реализации. Рассмотрены общие теоретические проблемы атри-

бутных автоматов, а также вопросы их композиции/декомпозиции и

оптимизации.
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