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Abstract. NP-complicated problems have been described in the graph theory. An example is the

extracting ofall maximal cliques from a graph. Many algorithms for solving this problem havc been

described. However, complexity is linear to the number of maximal cliques. This paper discusses a

new approach for extracting all maximal cliques, based on the monotone system theory. The

complexity of the presented algorithms is linear to the number of maximal cliques.
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1. INTRODUCTION

Assume that the finite undirected simple graph G(V, E) is given, where

Vis the set of nodes, | V| = N, E is the set of edges.

Definition Gl. The arbitraryfull graph is called a clique.

Definition G2. The clique which does not contain other cliques is called

a maximal cligue.

Definition G3. The largest maximal clique is called a maximum clique.

Problem. To extract all maximal cliques from the graph G.

Many algorithms have been described to solve this problem. The best

solution today is an algorithm, the complexity of which is linear to the

number of maximal cliques [" %]. The theory and algorithms described in

this paper can solve this problem. We assume that the graph G is presented
in the form of an adjacency matrixX(N, N), the main diagonal of which has

Zeros.
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2. THE THEORY OF MONOTONE SYSTEM

This section gives the main concepts of the theory of monotone system
Г.

Definition Ml. Let a finite discrete set X, (Х = М and a function Ttx on

it, which maps to each element b € X a certain nonnegative number

(weight) Tty (b), be given. Thefunction Tty is called a weightfunction if it is

defined on any subset X' C X; the number Tx(b) is called a weight of
elementbin X'.

Definition M2. A set X with a weightfunction Tty is called a system (or
a system on elementsfrom X) and is denoted by 11= (X, Itx).

Definition M3. The system Il' = (X', ntx), where X' € X is called a

subsystem ofthe system I 1 = (X, Ttx).

Definition M4. The system I 1 = (X, ntx) is called monotone if in the case

оапу b € X\{c}, c € X, Ttx\¢)(b) < Ttx(b), where X is any subset ofX.

Definition MS. Function Q which maps to every subset X < X of the

monotone system a nonnegative number Q(X') = min Ttx(b) is called an

objectivefunction.

Definition M6. The subsystem I 1 = (W, nty) ofthe monotone system I 1 =
(X, mx), in the case о]which thefunction Q obtains a maximal value Q(W)
= max Q(X') = max min Ttx(b), is called a kernel of the monotone system

I1; respective Q(W) value is called a measure ofthe kernel quality.

2.1. How to create a monotone system

To use the method of monotone system, we have to fulfil two

conditions:

1) there has to be a weight function 7x(b) which will give a measure of

influence for every element b of the monotone systemX;

2) there have to be rules F' to recompute the weight of the elements of

the system if there is a change in the weight of one element.

These conditions give us a lot of freedom to choose the weight
functions, and the rules of weight change in the system. The only constraint

we have to keep in mind is that the rules F and the weight function 7t have

to be compatible in the sense that after eliminating all elements b from the

systemX, the final weights of b € X must be equal to zero.
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3. MONS-ALGORITHM

In this section we describe a greedy algorithm for extracting all maximal

cliques from an undirected finite graph. It uses all main steps of the

monotone system algorithms. It is a MONS-Algorithm [*°] in the graph
theory. In essence, Al is a recursive algorithm. We present its

back-tracking version here.

To separate all maximal cliques from a graph G(V, E), we use its

adjacency matrix X; (index i shows the number of matrix generation, X

corresponds to G), on the main diagonal of which we use zeros. A

monotone system will be created on X. In this algorithm as a weight of a

node, we use its degree in the subgraph G;, corresponding to the adjacency
matrix X;. It is easy to check that these weights create a monotone system
on a graph. All main theorems (weight function is monotone, the maximal

clique as a set of elements of the adjacency matrix is a kernel of the

monotone system) were proved in [4].
The weights (degrees) of the nodes will be saved in the vector F;. The

nodes belonging to a clique in the generation i are saved in the vector

CLIQUE..
In all generations we analyse only nodes with non-zero weights. The

nodes in the list CLIQUE,; are not used for the matrix X; analysis. Thus, in

the last generation (the possible maximal number of generations equals to

the number of nodes in the maximum clique) the number of nodes to be

analysed equals to one. The process of elimination of a node in the

generation i means that this node is eliminated from the analysis also for all

next generations created from this generation i. The maximal clique is

found if

1) the weight of a node in X; has been changed to zero or

2) all non-zero weights in F; are equal to the number of nodes under

analysis in X; minus one (N nodes with a weight N-1 each one, the so

called “rule n—l7).

3.1. Algorithm Al

Pl. Initialising. i: = 0, CLIQUE: = { },Fo: ={ }.
P2. Calculation of weights of the nodes of X, to Fj.
P3. Check of a maximal clique. IF the weight of the node K in F;is zero,

we have found a maximal clique. Output CLIQUE; and the node K. We

shall output as many maximal cliques as many nodes K with zero-weight
there exist in X;.

P3A. IF the weights of the nodes in X; are equal to the number of nodes

with non-zero weight —1 THEN BEGIN a maximal clique has been found.

Output all nodes with non-zero weight of X; and CLIQUE; as a maximal

clique. Set all weights in F; to zero END
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P4. Control of back-tracking. IF all weights in F; are zeros THEN

P4A. BEGIN i: =i - 1. IF i = -1 THEN GOTO FINISH ELSE GOTO

P3A END

P5. Selection of the leading node. CLIQUE,,: = CLIQUE,. Find the

node J with the maximal weight in F;. If there are more than one, take the

first. Add J to the CLIQUE,,,.
P6. Elimination of node and recalculation of weights. Eliminate the

node J and recalculate weights in F; (set zero to the weight of node J in F;
and diminish its neighbours’ weights by one).

P7. Formation of a new generation. i: =i + 1. Exclude the submatrix X;
corresponding to the node J from X;_;. Calculate the weights for F;.

PB. Control of the exhaustedness of nodes. Compare weights of F; and

Fi_;. For nodes with equal weights in F; and F;_;, set their weights in F;_; to

zero and then diminish their neighbours’ weights in F;_; by one.

P9. Control of the originality of the extracted clique. IF there exists a

node which has belonged to any extracted maximal clique, but does not

belong to CLIQUE; and X;, and which is adjacent to all nodes in CLIQUE;
and X; THEN GOTO P4A ELSE GOTO P3.

FINISH

Commentary to step P9. Although node elimination by diminishing its

neighbours’ weights by one, for a certain node, does not exclude its non-

zero weight after extraction of all its maximal cliques. In this situation,

extraction of a clique as a part of extracted maximal clique is possible. To

exclude that, special testing (step P9) is needed. Theorem 5 below explains
this in detail.

3.2. Proof of the correctness of algorithm A 1

We present here the definitions and theorems proving the correctness of

algorithm All. The theorems are commented where necessary. We assume

that the graph G(V,E) is finite and undirected. In the description of

algorithm All we preferred maximal weight in choosing the leading node.

In the theorems proved below, we assume that the node may be chosen to

be a leading node independent of its weight.

3.2.1. Definitions

Definition 1. The adjacency matrix ofthe node Y is called an extract by
Y. The nodeY is called a leading node.

Definition 2. Suppose that the graph G and its adjacency matrix

X(N, N) are given. Assume that we have made an extractby arbitrary node

Yo. This extract describes a subgraph G, c G. Denote its adjacency matrix

Бу Х\, Х, < Х, М, < И, | Vi |= М,. Now we can make an extract from X,.
Denote it by X, X, < X, < X and subgraph by G;, Ga c Gic G,
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correspondingly. In that way, we form a sequence of extracts X D X; D X,
Э.. Х, Э., f<N-I, | le = Nr. That seguence determines the fixed
seguence ofthe leading nodes Yo, Yl, Y2,..., Yrl. The adjacency matrix X, is

called an extract on level t, 0 <t <N, and the leading node, by which we

make extractX,,) C X, is called a leading node on level t.

We call the adjacency matrix X of the graph G an extract on level 0 and

denote it by Xj.

Definition 3. The node ofthe graph G, which has not been chosen to be

a leading node on level t but all its cliques in X,, will be extracted until the

back-tracking to level t is called the exhaustive node on level t.

The adjacency matrix X, is getting smaller step by step because of the

elimination of the leading nodes and exhaustive nodes оп level О.

3.2.2. Theorems

Theorem 1. Iffor a certain node Z й$ weight (degree) Fi.(Z) + | =

F(2), then Z is ап exhaustive node.

Proof. Suppose that Y is a leading node by which the extractX,,; C Xr is

made. If in X, for a node Z F.,,(Z) + | = F,(Z) (F,s, + 1 because of zeros

on the main diagonal), it means that all node Z neighbours in X; have Y

neighbours too. If all maximal cliques for the node Y are separated, then all

maximal cliques for Z are also separated. Thus, according to Definition 3,
the node Z is an exhaustive node.

The theorem is proved.

Commentary. This theorem is deeper in essence than it may seem. In

the extracting process, the matrix X, becomes smaller and smaller, with the

number of nodes decreasing. Thus, exhaustedness of X, does not follow

from forming of one sequence of the leading nodes Y,, Yy ~..
.
If the node

Z has not been chosen as a leading node on level ¢, it will be exhausted

completely relative to the leading node in X; ifFi;(Z) + 1 = F(2).

Theorem 2. In algorithm Al, to every extract X, corresponds a clique
{Yo, Y1,..., Yl, U} with R nodes. The clique is maximal, if

1) the degree (weight) of the node U in X, equals to zero, R=t+ 1 ог

2) in X, the degree of nodes {j} with non-zero weight (their number

А<№) едиа!s 10 А -— 1 (so called "rule n —1"). In the latter case U = {j},
R =t+ U.

Proof. By algorithm Al, the leading node Y, is chosen from nodes of

Xl, t >O, and the extract X, X, € X, C ... € Xj is made. It guarantees that

the nodes of the sequence Yy, Y),..., Y., are neighbours. Thus on level ¢ -1,
we have extracted a clique { Yy, Y),...,Y,-1 } with ¢ nodes.

The leading node chosen on level t—l is eliminated from X.,.

Back-tracking to the level ¢ — 1 takes place only when X, is empty. It means
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that every node of X, if it is not an exhaustive node will be a leading node

on level ?.

Next, we prove the maximality of the extracted cligues. We assume that

for every X,, step P 9 of algorithm A 1 is applied.
1) If the leading node Y,; from X,; has been chosen, it is eliminated

from X,~ If then the weight of any node U#Y,, in X,; changed to zero

(consequently also in X;), then the nodes Yy, Yi,..., Y,.y, U are neighbours
and they have no neighbours together in G. Consequently, the clique with

t + 1 nodes is maximal.

2) If we have a situation, where all nodes {j} of X; with non-zero

weights have a weight equal to A — 1 (because the main diagonal of X; has

zeros) it means that those nodes are neighbours. As X, c X,y CXr2 C... C

Х, < Хо, then members of the sequence Y., Y;»,..., Yo are neighbours of

these A nodes and there are no common neighbours of them in X,. Thus, the

clique from these ¢ + A nodes is maximal.

The theorem is proved.

Theorem 3. Suppose that we are on level t and the leading node Y, has

been chosen. Then, relative to Y,, all maximal cliques included in X, are

extracted.

Proof. Al is a recursive algorithm in which all activities are the same

for any extract X;. The extract X; can not be exhausted before all extracts

Хн € X, would exhaust.

On the basis of Y, the extract X,,; < X, is made. It includes only nodes

adjacent to ¥; in X,. The back-tracking to X; would happen only if all nodes

of X;+l were chosen as the leading ones on X; or they were exhaustive nodes

(see Def. 3), i.e. when Xi = 2. This means that we have obtained all pairs
of nodes Y,—Z,,, where Z,,, is an arbitrary node of X,,;. Here any node of

X:+l can be chosen or exhaustive only at once 10 Х.

It happened so on any level i, t <i <N. This technique guarantees that

relative to Y,, we analyse all possible combinations of its neighbours in X;.

Since X; © X;4l Э Х, D
...,

then we analyse only combinations between

adjacent nodes, i.e. Y; =Yy, Yi=>(Yul =Yu2), Y=Y — (Yu2 —Y3)), etc.

The current sequence of extracts X; D Хы DX2 D... ends if the elements

of the current leading node sequence have no common nodes, i.e. X = @.

That is exactly when the maximal clique has been extracted (see Theorem

2). Then the back-tracking to X,,;; is made and all the described activities

are repeated again but relative to X .

Thus, using algorithm A 1 relative to Y, all maximal cliques included in

Х, аге separated.
The theorem is proved.

Corollary 3.1. If the leading node Y, is chosen, we may nullify its

weight in X, before all maximal cliques relative to Y, inX, are extracted.
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Theorem 4. Algorithm Al excludes repetitive maximal clique
extracting.

Proof. Suppose that we are on level £ and we have chosen a leading
node Y, for extracting X,. Y, is eliminated from X,. Consequently, in

back-tracking to level ¢ the node Y, cannot be included in the next Xi C X

It happens so on every level ¢, t > 0. Thus, for any level ¢ in extracting of

the maximal clique relative to a leading nodes sequence Yy, Yi,..., Г, апу

two cliques from X, cannot be identical.

The theorem is proved.

3.3. An example ofusing algorithm A 1

Suppose that the graph G is given by adjacency matrix X

Оп extracting all maximal cliques, ме use algorithm Al. To

demonstrate the work of the algorithm, we choose the graph on which the

originality check of the extracted clique (algorithm Al step P9) is not

needed.

CLIQUE= {}. According to step P2, we calculate its degree (weight) to

every node in X. On this step, we formthe vector of weights F:

Fo: 244422

Then we check if the "rule n —1" (P3A) applies.
Since X is not a clique, the node with the greatest degree in X is chosen

to the leading Y, (PS). As there are more than one, we choose the first, it

means Yy=2: CLIQUE, = {2}. The leading node is eliminated (P6 it

means its weight in Fj is zero-filled and its neighbours’ weights in X are

decreased by one:

Fp:103312

According 10 step P7, the extraction X, is made by Yy = 2 and the

weights F, are calculated. Then the feedback comparison of weights is

made (P8

Х| 123456

11011000
2| 101110

31110101
41011011
5| 010100
61 001100
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The feedback comparison is applied and the nodes 1 and 5 are

eliminated from level 0. The recalculated weights оп Хо аге:

Fp:002202

Now according to the step P3, we have to check the existing of zero-

weights on X;. As all nodes have non-zero weights, we must choose the

next leading node Y; (P5 Y; =3, CLIQUE;= {2,3}. We eliminate it (P6

Fi:0011
Then we extractX, and calculate its node degrees (P7

As we can see, the nodes of X, have a weight equal to zero (P3 Thus,
we have separated two maximal cliques

{2,3,l}and {2, 3, 4}.
As there are no more nodes with non-zero weight in X,, we have to do

back-tracking (P4 to level 1. But the nodes with zero-weights will not be

analysed here.

The "rule n— 1" is applied (P3A). It means that the maximal clique
{2, 4, 5} has been separated. Since all nodes on level 1 now have

weight = 0, we do back-tracking to level 0 (P4 Three nodes are analysed:

Х |1345

110100

311010

410101

510010

F|:1221

Х;| 1 4

11004|00
Fz! 00

Х, |4 54[01
5 | 10

F: 11

Xo'34631011

4(101

6/110

F()Z222
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The "rule n —1" is applied (P3A), which means separating the maximal

clique {3, 4, 6} and zero-filling the weights of those nodes. As this is level

0 and there are no nodes with non-zero weight, then all maximal cliques
from G have been separated.

3.4. Why do we need step P 9 of algorithm All

The last theorem proved that every extracted maximal clique by
algorithm All is unique. Why is the control of clique originality needed

then? The reason is that the clique extracted by Al may be a clique, but not

a maximal clique. This situation is possible because of decreasing the

neighbours’ weights by one when eliminating the leading node Y, does not

exclude the change of neighbour Z of Y, into an exhaustive node but its

weight Fi (Z) + 1 4F(Z).
The next theorem will explain the described situation. Letus define

some new terms.

Definition 4. Suppose that Xi has been extracted. Any node Z which

has belonged to any extracted maximal cligue and does not belong to the

leading node sequence Y, Y\,..., Y, is called a banned node. All the other

nodes are calledfeasible nodes.

Theorem 5. Suppose that the leading node Y, from X, was chosen, and

X 1 © X, was extracted. Ifthere existsa banned node j, relative to which all

maximal cliques were extracted in graph G and which was connected with

all leading nodes in the current sequence Y,, Y,~..., Yo and with all nodes

of X 1 , then the clique 10 be extracted is a part of the maximal clique
extractedearlier.

Proof. Suppose that there exists a banned node j which was chosen to

be a leading node on level 0 and which was connected with all leading
nodes Y,, Y.,..., Yo and with all nodes of X, .

For the banned node j, all

maximal cliques were extracted. If it is connected with all {Y;}, i = 0,..., 1,

and with all nodes {p} of X,;,, then it means that all these nodes {Y;} and

{p} and j together were analysed earlier in extracting maximal cliques of j.

Consequently, nodes {Y;} and {p} together can form a clique from the

maximal clique extracted earlier.

The theorem is proved.

To exclude the situation described in Theorem 5, a special test is needed

(step P 9 in A1l). It is applied to everyX, and therefore it is time-consuming.
If the result of that activity is positive, then the sequence of extractsX, is

interrupted and the back-tracking to X, is made.
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4. WHEN DO WE USE THE CLIQUE ORIGINALITY TESTING

Next, we will show that this kind of testing is needed only in certain

cases.

Definition 5. A node which has not been compared with the node Z 15

called afeasible node relative to Z.

Applying this definition in extracting all maximal cliques, we have to

add new activities to algorithm Al.

First, we have to choose a leading node among the feasible ones. It

guarantees that the maximal clique, which includes a feasible node, is

original and does not need special testing of originality.
We form the thesis as a theorem.

Theorem 6. The sequence of the leading nodes which includes a

feasible node corresponds to a maximal clique not yet extracted.

Proof. According to Definition 4, the feasible node is a node which has

not belonged to any extracted maximal clique. Thus the maximal clique,
which includes a feasible node, is original. If the sequence of leading nodes

includes a feasible node related to Y, then assuming that the node Y is in

this sequence, it is the sequence of nodes which has not been analysed
earlier. Thus, the extracted maximal clique is original. The maximality of

the extracted clique is guaranteed by Theorem 2.

The theorem is proved.

Because of the conflict between a node's weight and the elimination

process, a situation may occur where for a node Z, all maximal cliques are

extracted (we do not know that!), but the weight of Z is not equal to zero.

The situation is described by the next theorem.

Theorem 7. If in X, there exists a node Y which has no feasible
neighbours, but

1) the weight of Y is not equal to zero and

2) there do not exist banned nodes which are adjacent to Y and to all the

nodes ofan extract based on it,
then there exists unextracted maximal clique(s) in graph G.

Proof. For nodes, according to Theorem 3, with weights equal to zero

on level 0, all maximal cliques have been extracted. The node which has

feasible neighbours has unextracted maximal cliques (Theorem 6). For

other nodes with non-zero weight on level 0, there could exist unextracted

maximal cliques. According to Theorem 5, it can only be a node which has

no common banned node with nodes of extractbased on it.

The theorem is proved.
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To apply results of Theorem 7, we have to choose a feasible node to be a

leading one. If no nodes of this kind exist, we have to choose a node with

feasible neighbours.
According to Theorem 7, we have to use the test of clique originality

(step P9) only if there exist some nodes with non-zero weights and without

feasible neighbours on level 0. In this case, we can choose any node as a

leading one and algorithm Al step P 9 guarantees that the maximal clique
extracted is unique.

We use the results of Theorem 7 in algorithm A2.

4.1. Algorithm A 2

Pl. Initialising. i: = 0, CLIQUEq: = { },Fo: = { }.
P2. Calculation of weights of nodes ofX to Fy.
P3. Check of a maximal clique. IF the weight of some node K in F; is

zero, we have found a maximal clique. Output CLIQUE; and the node K.

We shall output as many maximal cliques as many nodes K there exist in

Xi.
P3A. IF the weights of the nodes in X; are equal to the number of nodes

with non-zero weight — 1 THEN BEGIN a maximal clique is found. Output
all nodes with non-zero weight of X; and CLIQUE,; as a maximal clique. Set

all weights inF;to zero END

P4. Banning of nodes and control for back-tracking. IF the maximal

clique(s) was extracted THEN ban its nodes and ban these nodes relative to

themselves. IF all weights in F; are zeros THEN

P4A. BEGIN i: =i - 1. IF i = -1 THEN GOTO FINISH ELSE GOTO

P3A END

P5. Selection of the leading node. CLIQUE,,: = CLIQUE,. As a leading
node, find a feasible node J with the maximal weight in F; (C = 1). If there

are no feasible nodes, find a node J with a maximal number of feasible

neighbours (C =2). If there are several nodes, take the node with the

maximal weight. If there are no such nodes, take the first node with a

maximal weight (C = 3). Add J to CLIQUE,.
P6. Elimination of node and recalculation of weights. Eliminate the

node J and recalculate weights in F; (set zero to the weight of node J in F;
and diminish its neighbours’ weights by one).

P7. Formation of a new generation. i: =i + 1. Exclude the submatrix X;

corresponding to the node J from X;_,. Calculate the weights for F;.
PB. Control of the exhaustedness of nodes. Compare weights of F; and

Е. Еог nodes with equal weights in F; and F;,, set their weights in Fi_; to

zero and then diminish their neighbours’ weights in F;_; by one.

P9. Control of the originality of the extracted clique. IF C < 3 THEN

GOTO P3. IF there exists a node which belongs to any extracted maximal
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clique, but does not belong to CLIQUE,; and X;, and which is adjacent to all

nodes in CLIQUE,; and X; THEN GOTO P4A ELSE GOTO P3.

FINISH

4.2. An example of using algorithm A 2

Suppose that we have a graph G with an adjacency matrix X:

To extract all maximal cliques, we use algorithm A 2 here.
CLIQUE( = {}. At the beginning, а! the nodes are feasible ones, i.e.

FEASIBLE = {l, 2,3,4, 5,6}, BANNED = {}.
According to step P2, we calculate the weights:

Fo:333111
Then we check the applicability of the "rule n —1" (P3A). As X is not a

clique, the feasible node with the greatest weight would be chosen as the

leading Y, (P5 Since there exist many nodes with the greatest weight, the

first of them, in our case node 1, is chosen: Yo =l, CLIQUE, = {l}. Then

the leading node is eliminated, meaning that its weight is zero-filled and its

neighbours’ weight inX is decreased by one (P6

Ео: 022101

According to step P7, the extraction X; is made and the weights are

calculated, then feedback is compared (P8

The feedback comparison (P8 is not applicable. According to step P3,
the existence of nodes with zero-weight in X is checked. There is one node

of this kind — node 5. Thus, the maximal clique {l, 5} has been extracted.

Now, X, includes two nodes with non-zero weight. By applying the "rule

n— 1" (P3A), the maximal clique {l, 2, 3} is separated, and these nodes are

banned:

BANNED = {l, 5,2, 3}.

X| 123456

11011010
21101001
31110100
41001000
51100000
6| 010000

Х |235

21010
31100
51 000

F: 110
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Since all nodes in X; have been analysed (all weights are zeroes), we do

back-tracking to level 0 (P4A).

As the "rule n— 1" is not applied (P3A), node 4 is chosen as the first

among feasible nodes with the equal greatest weights {4,6}, Y,=4,
CLIQUE, = {4} (P5 and eliminate it (P6

Fo: 2101

Then we extractXi (P7

As we see, there is only one node and it has the weight =O, thus the

maximal clique {4, 3} has been extracted (P3 BANNED = {l, 5,2, 3, 4}

(P4 Since X, has no more nodes to analyse, we 40 back-tracking to level 0

(P4A).

Now we choose node 6 as a leading one, the only feasible node in X,

Yo =6, CLIQUE, = {6} (P6 and extract X, (P7

As X, has a node with zero-weight, the maximal clique {6,2} is

extracted (P3 BANNED = {l, 5,2, 3,4, 6} (P4
As X, has no more nodes to analyse, we do back-tracking 10 level 0

(P4A).

X0[2346

210101

311010

410100

611000

Ео: 2211

Xi | 3

310

F|Z 0

Хо 1236

2/011

31100

61100

F: 211

Xi|2

210

F|I 0
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Now there are no feasible nodes under analysis in X, neither are there

any feasible nodes relative to members of X, (we compared nodes 2 and 3

together relative to the leading node 1). Thus, we have to check the

originality of the clique to be extracted (P9 We have to check if a “cover

node” exists on X;, for which all maximal cliques have been extracted and

which is adjacent to all nodes in the current leading nodes sequence
{Y0,...,Yi1 }. If it exists, the association of nodes has been analysed together
earlier and the clique to be formed cannot be maximal.

In our case, the leading nodes sequence is empty and on X, there exists a

“cover node” 1 as a cover node relative to which all maximal cliques have

been extracted:

Consequently, the clique {2, 3} is not maximal and we have to do back-

tracking. But as we are on level 0, it means that all maximal cliques in X

have been separated.

5. THEOREM ABOUT CONVERGENCE OF ALGORITHMS

A 1 AND A 2

Theorem 8. Algorithms Al and A 2 extract all and only maximal

cligues.

Proof. Al is a recursive algorithm for which all activities are the same

for every extract X,. By extracts, the hierarchical tree (HT) of clique nodes

is formed. Nodes are added to the tree by one. The clique is maximal if a

certain node of the HT is a leaf. In this case, the back-tracking to the

previous node of HT is done, and a next maximal clique is extracted. We

always obtain only a current branch of HT.

Xol232/01
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1. Convergence. The leading node Y, and all exhaustive nodes are

eliminated from X, and their neighbours’ weights are decreased by one in

X;. Thus, in back-tracking to level ¢, the number of nodes in X, is

decreasing.
The leading nodes of the current sequence Yy, Yi,..., Y, do not belong to

Xi -
The elimination of a leading node and exhaustive nodes from X,

decreases their neighbours’ weights in X,. It means that the weight of the

node in X; is less than in X,;. All nodes of X, with zero-weight do not

Беlопу 10 Х.
The back-tracking to level ¢is done уубеп Х, 15 empty. It means that all

its nodes have a weight equal to zero. Thus, the number of back-trackings
to level ¢ cannot be greater than the number of nodes with non-zero weight
in X,.

2. Maximality of cliques. According to Theorem 2, the extracted clique
is maximal.

3. The originality of the maximal clique. According to Theorem 4,

every maximal clique is extracted only once. Proceeding from Theorems 5

and 7, we can capture the situations when the unoriginal clique is extracted.

In that case, the special control is done.

The theorem is proved.

6. COMPLEXITY OF ALGORITHMS A 1 AND A 2

Before we present a theorem about the complexity of algorithms Al and

A2, we describe the main concept of these algorithms.
Algorithms form a n-tree with nodes, which are the nodes of maximal

cliques. In reality, we do not form this tree but only pass it, we obtain only
the branch of the current maximal clique. From any node of this tree, there

may exit only so many branches as many maximal cliques are included in

Xt+|-
The number of leaves of the n-tree was determined by the number of

maximal cliques in the graph. The length of the longest branch of the n-tree

equals to the number of nodes in the maximum clique of the graph G minus

one. The length of a certain branch in the n-tree must not be equal to the

number of nodes in the corresponding maximal clique because of the "rule

п - 1". In this case, the set of nodes corresponds to a leaf of the branch.

Thus, the efficiency of an algorithm depends on maximising the use of

the "rule n —1" because of decreased need for the number of extracts X,. In

essence, it is a new optimising task to decrease the branch lengths (the

number of extracts). In this case, the best algorithm will have a minimal

number of nodes in the n-tree.

Algorithms Al and A 2 do not solve this optimisation task. They
minimise the numberof branches in the n-tree.
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As one possibility, we can form its own n-tree for every maximal clique.
But different maximal cliques may have common nodes. For algorithms Al

and A2, the goal is to maximise the number of common nodes for different

cliques. The "rule n— 1" is used here as a complementary instrument to

diminish the number of nodes in n-tree.

Comparing these two optimising tasks for the first one, which is based

on the "rule n —1" we ignore that the rule causes a perceptible increase of

the number ofextracts X,. But if we use the "rule n —1" to solve the second

task, it immediately decreases the number of extracts.

Theorem 9. The complexity of algorithms Al and A 2 is linear to the

number ofmaximal cliques in the graph G(V, E).

Proof. Suppose that the graph G includes S maximal cliques and апу
maximal clique has an average number of nodes equal to A. According to

Theorem 8, algorithms separate from the graph G S sequences of extracts

with the average length of A. Suppose that in every extract there are A

nodcšs on average. Thus, the whole complexity is equal to T = S*A*A* =

S*A".

Increasing the number of maximal cliques in G (for example 51 > §), the

complexity will be increased by 71-T=Sl*4° — S*4° =A*(Sl —5).
Conseguently, the complexity of algorithms A 1 and А2 is linear to the

number of maximal cligues in G.

The theorem is proved.

Theorem 9 is based on the assumption that for every maximal cligue its

own n-tree is formed. In fact, algorithms A 1 and A 2 expand this situation.

1. The leading node and exhaustive nodes are eliminated from X,.
2. The number of nodes inXi cXi lis less at least by one than in X,.
3. Where possible, the "rule n —1" is used.

6.1. Algorithm complexity on Moon-Moser graphs

Next, we show the complexity of algorithms Al and A 2 on the well-

known Moon-and-Moser graphs (MM-graphs).
As known, a MM-graph G consists of groups of nodes so that the nodes

of a group are not adjacent together, but they are adjacent to all other nodes

of G.

Moon and Moser [°] proved that by adding new groups of nodes to the

MM-graph, the number of maximal cliques in it increases exponentially.
Suppose that the MM-graph with R groups of nodes, three nodes in

each, is given. Then it includes 3* maximal cliques of R nodes. |
Using our algorithms to extract all maximal cliques we do Z; Y extracts,

j= 1,2,.... R— 1. Suppose that every extract has R nodes on average. As we
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use adjacency matrix instead of the graph, the complexity is equal to

T=R*%;3 =o.s*R**3%,

7. OPTIMISATION OF ALGORITHMS A 1 AND A 2

It is clear that the clique originality testing is needed because of the

adequacy missing between the node weight and eliminations in algorithms
Al and A2. It means that there can exist situations where all maximal

cliques that include a new node have already been extracted (we do not

know this!), but the node has non-zero weight inXj,.
This conflict is derived from the essence of these algorithms. They are

greedy algorithms by which all edges between the node Y, and its

neighbours in extraction X, are eliminated from X,. A 1 and A 2 do not take

into consideration the situation, when only the elimination of single edges
is needed. A contradictory situation arises here and to remove it, the testing
described is needed.

Elimination of a node means the elimination of all edges between the

node and its neighbours. In A 1 and A 2 we do it on every level ¢, >O,
related to level ¢+ 1 eliminating the leading node and exhaustive nodes

from X,. But it has no feedback always to levels £ —1, £ —2, etc.

The question arises here: when and how can we eliminate single edges?
The elimination with feedback would be essentially global, it means that

the elimination of edges proceeds from the structure of the graph G, not

from any subgraph G' c G. Ignoring it, for special testing in algorithms Al

and A2, step P 9 is needed.

This conflict is not eliminated by using the terms "feasible" and

"Баппей" node (see Def. 4). The nodes may be banned one relative to

another, it means they have no feasible neighbours, but we have not yet
analysed them by three, by four, etc. together.

The adjacency matrix establishes adjacency between the nodes. It means

that the weight of the node equals to its degree in the adjacency matrix. To

give the correct answer to our question, for every adjacent node pair, we

have to estimate the existence of the common node in addition to the nodes

of the leading nodes sequence. If they have no more common nodes, we

may eliminate the edge between those two nodes from several levels < 1.

We can do the process of elimination of an edge only related to the nodes

for which all cliques are not yet extracted, because all edges for the nodes

with all extracted cliques are also eliminated.

Thus, the edge between the adjacent node pair in X,, which has no

common adjacent node with the described property, can be eliminated from

several levels < .

To realise this approach, we have to define some new terms.
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Definition 6. The node relative to which all maximal cliques have been

extracted is called an exhausted node. All the other nodes are called free
nodes.

Thus, differently from the banned nodes, an exhausted node is a node

which on level 0 has been

1) chosen to be a leading or

2) an exhaustive node.

Definition 7. Thefree node, which has not been chosen to be a member

of the current leading nodes sequence and does not belong to the X,, is

called a decision node on level t.

We need the term to explain which edges and when can be eliminated.

For all of the theorems below, we suppose that the extracting of

repetitive cliques is excluded. It means that in this situation, the special
testing is used (step P9).

Theorem 10. The edge between the arbitrary nodes A and B ofX, can

be eliminated from X, only if no common decision node for A and B

among the nodes ofX, exist.

Proof. We shall show that a conflict arises if |

1) the decision node exists and the edge is eliminated,

2) the decision node does not exist and the node is not eliminated.

1. Suppose by contradiction that we can eliminate the edge if a decision

node exists in the extraction X,;.Then the elimination of the edge on level

t — 1 means that on back-tracking to the level 7 —1, doing extraction by this

decision node, there exists no edge between A and B. Since the decision

node has to belong to X,;, then not all maximal cliques have been extracted

yet relative to it. As a result of the elimination of this edge, a situation is

created where the maximal clique, which includes that edge, will be

unextracted. That is in conflict with the assumption that all maximal

cliques will be extracted.

2. Suppose that a decision node does not exist and we do not eliminate

the edge between A and B. If there is no decision node among the nodes of

Xl, then this pair of nodes (A, B) could not be obtained relative to any
node of X,;. But it means that relative to X,; (it means relative ю е

current sequence of leading nodes Y, Y,..., Y,») for this pair (A, B) all

maximal cliques have been extracted. If we do not eliminate this edge, then

on back-tracking to the level #— 1, one of these nodes, A or B will be

chosen as the leading node. A conflict has been created which can cause

the repetitive clique extraction.

The theorem is proved.

According to this theorem, we have to estimate all pairs of connected

nodes on X, and eliminate the edge between the nodes from the previous
extraction X,_;,which has no common decision node in it.
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This approach reduces the need to step P 9 of algorithms Al and A2.

Algorithm A 3 described below takes into consideration the results of

Theorem 10. As in algorithms All and A2, in the algorithm A 3 by the node

weight we imply the node degree in an extracted subgraph.

7.1. Algorithm A 3

Pl. Initialising. i: = 0, CLIQUE: = { }, Fo: = { }.
P2. Calculation of weights of nodes ofX, to Fj.
P3. Check of a maximal clique. IF the weight of the node(s) K in F; is

equal to zero, we have found a maximal clique(s). Output CLIQUE; and

the node K.

P3A. IF the weights of the nodes in X; are equal to the number of

nodes with non-zero weight -1 THEN BEGIN a maximal clique is found.

Output all nodes with non-zero weight of X; and CLIQUE; as a maximal

clique. Set all weights in F; to zero END

P4. Banning of nodes and control for back-tracking. IF the clique(s)
was found THEN ban its nodes and ban them relative to themselves. IF

all weights in F; are zeros THEN

P4A. BEGIN i=i- 1. IF i = -1 THEN GOTO FINISH ELSE GOTO

P3A END

PS. Selection of the leading node. CLIQUE,,: = CLIQUE;. As a

leading node, find a feasible node J with the maximal weight in F;

(C=l). If there are no feasible nodes, find a node J with a maximal

number of free neighbours (C = 2). If there are several nodes, take the

node with the maximal weight. If there are no such nodes, take the first

node with a maximal weight (C = 3). Add J to the CLIQUE,.
P6. Elimination of node and recalculation of weights. Eliminate the

node Jand recalculate weights in F; (set zero to the weight of node J in F;
and diminish its neighbours’ weights by one).

P7. Formation of a new generation. i: =i + 1. Exclude the submatrix

X; corresponding to the node J from X;_,. Calculate the weights for F;.
PB. The edge elimination control. IF there exists an edge (J,G) in X,

which has no adjacent neighbours among free nodes of X;;, THEN

eliminate this edge (/,G) from X;, and decrease the frequency of the

nodes J and G in F;_; by one.

P9. Control of the originality of the extracted clique. IF C < 3 THEN

GOTO P3. IF there exists a node which belongs to any extracted maximal

clique, but does not belong to CLIQUE; and X;, and which is adjacent 10

all nodes in CLIQUE; and X; THEN GOTO P4A ELSE GOTO P3.

FINISH

On determining common neighbours of the connected node pairs in X,
the maximal number of compared node pairs is equal to (N, — 1)(N, — 2)/2
in algorithm A3.
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But there exists the second solution which matches with the technique
of extractions used in Al and A2. On this basis, the algorithm All has to

complete the following activities: we choose the leading node Y,| and then

determine the existence of common decision nodes between other nodes of

the extraction X;, based on Y,; with node Y,;. For these nodes A of X,
which have no common decision node with Y,|, we eliminate the edge
(Yl, A) from all extractions X, i < .

Next, we will prove the validity of the theorem.

Theorem 11. From all levels i, i < t, we can eliminate the edge between

the leading node Y,, and the nodes A of extraction X,, based on Y,,, if
there exists the edge (Yl, A), which has no common decision node on

level t.

Proof. According to the definition, the decision node on level ¢ is a free

node which neither belongs to X; nor to the current sequence Yy, Yi,..., ¥ii.
If the leading node Y,; and the arbitrary node A of X, have no common

decision node on level ¢, then it means that any graph Gi c G, O<i<t,
which belongs to the extraction X;, based on the leading node Y; of the

current sequence, does not include any node relative to which we can

analyse the connected node pair (Yl, A). It means that all maximal cliques
containing this edge are extracted. Consequently, we can eliminate this

edge from all levels i, i < ¢.

The theorem is proved.

The difference between Theorems 10 and 11 in the context of

algorithmics can be described as follows. In the first theorem, the edge is

eliminated only from the previous extraction, in the second one, from all

extractions before the last.

But what can we do in case of Theorem 11 with the node pair (Y., A),
which has a decision node on level ¢ (i = #)? Can we eliminate this edge ог

not? If it is possible, then from which extractions Х, #< ¢?

The next theorem will give an answer to these questions.

Theorem 12. The edge between the leading node Y,|and the node A of
the X,, extracted byY,~ which has a common decision node U on level t,

can be eliminated from all levels t —i, 0 <i <r, where r is the number о]
the level on which the node U became the decision node.

Proof. Suppose that the leading node Y,; and the node A from X,
extracted by Y,; has a common decision node U on level ¢. Suppose by
contradiction that we do not eliminate this edge. If we extract a maximal

clique and do back-tracking to level #— 1, then there are no conflicts

because of elimination of Y, from X,~ it means that all edges of the node

Y, are eliminated. Problems arise when we do back-tracking to the level

t—i, 1 <i<t Then we have two possibilities.
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1. This edge may fall into the new extraction X,,< X,;. That occurs

when the node U is chosen to be the leadingY, ~ on the basis of which the
new extraction X,; will be made. In this case, the original maximal clique
will be extracted.

2. If the node U does not belong to the X,~ then as the weight of the

nodes Y, and A is not equal to zero in X, (we did not eliminate this edge
(Yi-1, A)!), any node of this pair would be chosen 10 be the leading node

some time and then the extraction of unoriginal clique is done.

Thus, in the second case we have reached a conflict. This conflict

preserves for all back-trackings to level #—2, t—3 and so on, while the

situation described in the first case arises, i.e. until we have reached the

level ¢t — r in extraction X,_, of which the node U exists.

The theorem is proved.

The described approach is used in algorithm A4. In our comparison of

algorithms A 3 and A 4 in case of an extraction X;, we do only N,
comparisons. But when using the results of Theorems 11 and 12, we have

to recalculate the weights of the nodes not only on level { — 1 but on all

levels i, i< t.

7.2. Algorithm A 4

Pl. Initialising. i: = 0, CLIQUEq: = { }, Fo: = { }.
P2. Calculation of weights of nodes ofX, to Fj.
P3. Check of a maximal clique. IF the weight of some node(s) K in F;

is zero, we have found a maximal clique(s). Output CLIQUE; and the

node K.

P4. Control for back-tracking. IF all weights in F; are zeros THEN

P4A. i :=i-1. IF i= -1 THEN GOTO FINISH. 1Е there are no

nodes under analysis THEN GOTO P4A.

PS. Selection of the leading node. CLIQUE,,: = CLIQUE,. As a

leading node, find a feasible node J with the maximal weight in F;

(C=l). If there are no feasible nodes, find a node J with a maximal

number of feasible neighbours (C = 2). If there are several nodes, take the

node with the maximal weight. If there are no such nodes, take the first

node with a maximal weight (C = 3). Add J to CLIQUE,.
P6. Formation of a new generation. i: =i+ 1. Exclude the submatrix

X; corresponding to the node J from X;_,. Calculate the weights for F;.
P7. The edge elimination control. IF there exists a node G which has

no adjacency neighbours among free nodes with leading node J THEN

eliminate this edge (J, G) from all X,, 0 < g < i.

PB. IF there exists a neighbour R of such kind THEN eliminate edge
(J, G) from all X,, r< g < i, where r is a number of level, from which R

changed to the decision node.
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GOTO P3. IF there exists a node which belongs to any extracted maximal

clique, but does not belong to CLIQUE; and X;, and which is adjacent to

all nodes in CLIQUE, and X; THEN GOTO P4A ELSE GOTO P3.

FINISH

Algorithm A 4 does not enable us to apply the "rule 7 —1" because the

results of decision node determination for nodes of extraction X; have to be

resounded in previous extractions i, i < t. We can exclude this situation by
using of the technique of algorithm A3. It means that for using the "rule

n—l", we have to find decision nodes for all edges оЁ Х, а$ ме @@ п

algorithm A3, next eliminate the required edges as it was required in A4
and then use the "rule n— 1". Since we do that only once, at the end of

current sequence of extractions, no conflicts arise.

8. HOW DO YOU GET RID OF TESTING OF CLIQUE
REPETITIVENESS

If the clique to be extracted is not unique, we do superfluous extractions.

As we saw, we have decreased the number of turns to the testing of

originality of clique to be extracted, but we have not excluded that

completely. It means that there exist situations where we do not know if we

can eliminate the edge or not. These are situations when the nodes of the

edge and their decision node were involved in the extracted maximal

clique.
The next theorem gives an answer to the question in the sub-heading.

Theorem 13. Suppose that we are on level t and treat the elimination of
the edge (A, B) at which we havefixed all commonfree neighbours {j} ofA

and B, {j} #©. We cannot eliminate the edge (A, B)from levels i, i <t, if in

the graph G; C G, describedby the nodes of {j} and their neighbours, there

exists a maximal clique T, T # {Yo, Y,..., Yll}, all nodes ofwhich have no

common exhausted node with A and B.

Proof. By Definition 1 for the exhausted node, all maximal cliques have

been extracted. If every maximal clique of the graph G; has a common

exhausted node with edge (A, B), it means that we have treated any
association of maximal clique and edge (A, B). Thus there is no association

of nodes relative to which we have not analysed the edge (A, B).
Consequently, the nodes A and B will exhaust on level ¢ relative to the

sequence Yy, Y,..., У апа we have 10 eliminate the edge (A, B) from all

levels i, i <t.

If there exists a maximal clique 7, which has no common exhausted

node with edge (A, B), it means that this association of nodes (A and B and

nodes of clique 7) has not been treated earlier. Consequently, maximal

134 ,
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clique has not been extracted yet where these nodes exist together and we

cannot eliminate this edge.
The theorem is proved.

As we see, the determination of the situation described by Theorem 13

is very labour-consuming since for every edge we would determine all

maximal cliques in the worst case. Therefore the question of suitability
arises here. The special testing (step P 9 of algorithms) is more suitable for

realisation.

9. PROBLEMS IN REALISATION OF ALGORITHMS

A 1 AND A 2

The extractX, includes nodes which are adjacent to every member of the

sequence Yy, Yi,..., Y. One has to know the nodes of X, to determine the

nodes of X,;; and to calculate their weights. Thus, it is unsuitable 10

remember the X,.
To determine the nodes of level ¢+ 1, the set-theoretical operation

"intersection" is suitable, i.e., intersection over the set of adjacency vectors

of leading nodes in sequence. These vectors are bitvectors where "0"

denotes "not adjacent”, "1" denotes "adjacent". As the leading nodes are

joined to the sequence one by one, we do not have to find the intersection

over all the bitvectors. We can intersect only the vector of the last

intersection with the vector of the last leading node. Thus, for the extract of

X,, we have to intersect only two bitvectors.

It gives us the following advantages.
1. The main techniques of algorithms A 1 and A 2 are preserved.
2. We can now fix the exhaustedness of the node on level ¢ just by

zeroing the corresponding bit value in the vector of intersections. Earlier

we did it by nullifying the node’s weight.
We can realise the technique of fixing the common nodes of leading

nodes by using the lists. The choice of a suitable way is made by the

programmer.

10. PROBLEMS OF REALISATION OF ALGORITHMS

A 3 AND A 4

The technique used in algorithms A 3 and A 4 requires remembering of

all extractions X; of the current sequence of the leading nodes Y,..., Yi,...,Y
or the whole set of eliminated edges. It is necessary because we cannot

identify existing adjacencies between the nodes by their weights in X,.
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In this section, we present some recommendations for moderating of

this shortcoming. It is the mixed technique of algorithms A 1 and A3, which

is based on A3, but has not to remember all extractions X; of the current

sequence of the leading nodes.

The main idea of this technique is as follows. In algorithm A 3 by
Theorem 10, the elimination of all these edges of X, from X,| is done,

which has no common decision node among the nodes of X,;. In Al, the

testing is similar to that done by comparing node weights on levels ¢ and

t— 1. All nodes with equal weights are eliminated from X,;. From A3, it

corresponds to the situation where the node has no common decision node

among the nodes of X,; with any of its connected neighbours in X;. Thus,

algorithm A 1 does not fix the situations when relative to certain node of X,
we have to eliminate less edges from X, than it has neighbours in X,.

Thus, using the technique of Al, in A 3 we have to remember only these

X;, in case of which the elimination of not all edges but only several ones

was done from X,;.For other situations, it is necessary to remember only
lists or bitvectors of nodes.

11. USE OF MINIMAL OR MAXIMAL WEIGHT

In algorithms Al to A 4 we have used only maximal weight when

choosing the leading node.

Actually we may choose any node with non-zero weight as the leading,
these algorithms still congregate. (When proving of the theorems, we

supposed that!) But to accelerate this process, we may proceed from

minimal or maximal weight. Use of the minimal or maximal weight
depends on the graph density. Our practice has shown that maximal weight
works better for densities less than 50%, minimal weight works better in

the case of density more than 50%. If we use the maximal weight, then in

general, the maximum clique is extracted among the first cliques, in the

case of the minimal weight, it will happen within the last cliques.
Consequently, when using the maximal or minimal weight, the main

steps of algorithms Al to A 4 (elimination, feedback, extraction, testing of

originality and so on) do not change.

12. DISCUSSION

Algorithms A 3 and A 4 do not enable us to avoid completely the testing
of originality of the clique to be extracted, it is the step P 9 of algorithms A1
and A2, but they enable to decrease the number of turns to it.

To generalise the technique used in algorithms Al to A4, we can state

the following.
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1. In the case of these algorithms, the number of extractions depends on

the choice of the leading node and graph density.
2. For algorithms Al to A3, the number of extractions can decrease by

using "rule n — 1".

3. Using algorithm A2, the number of extractions X, in extracting all

maximal cliques compared with algorithm Al in the worst case is not

greater than with Al. In case of algorithm A2, feasible node or the node

with feasible neighbours in X; has to be chosen as the leading one,

exclusively. Ignoring that creates a situation extracting a repetitive clique
which requires special testing (step P9).

4. Algorithms A 3 and A 4 differ in their process of elimination of the

edge. In the case of A3, the recalculation of weights is made only on level

t— 1, in algorithm A 4 on all levels i, i <t. A 4 is better since we find the

decision node only for edge (Y;, A), where A belongs to X, extracted by У,
in A 3 for all edges (A, B), where A and B belong to X,,,.
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KOIKIDE MAKSIMAALSETE KLIKKIDE ERALDAMINE:

MONOTOONSETE SUSTEEMIDE TEOORIA KASITLUS

Rein KUUSIK

Artiklis on kisitletud orienteerimata loplikest graafidest koikide

maksimaalsete klikkide eraldamist monotoonsete siisteemide teooria

seisukohast. See probleem on NP-keeruline, maailma parimate algoritmide
keerukus on lineaarne graafi maksimaalsete klikkide arvusse.

On esitatud ja tdestatud monotoonsete siisteemide teoorial baseeruvad

algoritmid, nn. MONS-algoritmid, vaadeldava probleemi lahendamiseks.

Nende puhul on ldhtutud graafi seosmaatriksist, millele on ehitatud

monotoonne siisteem.
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Kirjeldatud ldhenemine vdimaldas luua terve rea efektiivseid algoritme,
mille keerukus оп Ппеаагпе graafi maksimaalsete klikkide suhtes.

Kirjeldatud teooria ja meetod on graafist suurima kliki eraldamise

efektiivsete algoritmide loomise alus.

ВЫДЕЛЕНИЕ ВСЕХ МАКСИМАЛЬНЫХ КЛИК С

ИСПОЛЬЗОВАНИЕМ ТЕОРИИ МОНОТОННЫХ СИСТЕМ

Рейн КУУСИК

Рассмотрено применение теории MOHOTOHHBIX CHCTEM — при

решении задачи выделения всех максимальных клик из конечных

неориентированных графов. Описаны и доказаны соответствующие

алгоритмы. Их сложность линейна числу максимальных клик в

графе.
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