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Abstract. Some auxiliary functions are used to approximate the symmetric binary relation by the

equivalence relation. The condition of approximation means minimising the number of non-

coincidence edges.
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1. INTRODUCTION

Recent studies of the author ['] deal with the approximation of the

symmetric reflexive binary relation R by the equivalence relation E to

minimise the number of elements of the set

{E-R} U {R-E}. (1)

On finding the relation E, the properties of reflexivity and symmetry are

trivials and therefore we consider here only some problems with the

property of transitivity. In the author’s opinion, the notions of the graph
theory can be used. The problem is solved for a special class of relations

by three auxiliary functions.

2. ESSENTIAL NOTIONS AND DEFINITIONS

Let G(V, U) be the graph of the binary relation R. The sets V and U
are the sets of vertices and edges, respectively.

Definition 1. The subgraph G. (V,,U.) о] the graph G(V,U) is a

connection ofthe subgraphs G, (V,,U, ), Gz (V»U2),.... Gp (V» U) if:
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Assume now that a graph G (V,U) contains the subgraph G,(V,,U,),
which has the following structure:

1) the subgraph G, (V,,U,) contains a maximal complete subgraph
Go (Vo,Uo);

2)the subgraph Go(Vo,Uo) intersects the maximal complete
subgraphs of the graph G (V,U).

We note here that if a connected subgraph of the graph G contains

more than two vertices, then its structure can be considered as a

connection of subgraphs, which corresponds to Definition 1.

Definition 2. The connection of maximally complete subgraphs
GI(VI,Uy), Go(Vo, Un),...,G(V;, U)) of the graph G(V,U) is a cluster ofthe

subgraph GV, U,) if
1) the connection ofsubgraphs Gy, G»,...,G; is connected,

2)V;e{1.2,..i} > VinVy2 O,

3)Ve{1,2,.,i} >{Vi-W}*D,

4) there is no such maximal complete subgraph G, that for the
connection of subgraph G, Gy,...,G;, G, the conditions 1, 2 апа 3 hold

true.

Let us denote now the numbers of elements of some essential sets

such that

1) |Vol=vs,
2) | VinV | =vy;, 1f G; (V;,U;) 1s a cluster,

3) | Vi- Vo | = t;, if G; (V;,U,) is a cluster too,

4) |{(Vi- Vo) x (Vi Vo)} N U|=L, it is the number of edges of
the graph G, which connect the vertices of the sets V; — V and V; NV,

5) ž t;,=S,ifl={l, 2,...,n, v} isthe set of indices of the clusters.
iel

It is easy to see that the edges of each cluster G; and the edges of the

Uy form the set of non-transitive pairs of the edges. The number of such

pairs is #; (vo —v;). Consequently, we have exactly three possibilities for

correcting this situation:

1) remove L; edges of the cluster G;;
2) remove v; (vo —v;) edges of the subgraph Gy;
3) by new edges, connect the vertices of the sets V; — V;, and

Vo — Vi. We need #; (vo —v;) edges forconnection.

Definition 3. Let i € [ and

fi(Gi) = (vo — vi)lvi, (2)
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Ji(Goi) = [til(vo — vi) + vi(S — )V[vi(vo — vi)], (3)

JAGi) =A(G)/f(Goi), (4)

be three auxiliaryfunctions of the cluster G;(V,,U,).

The non-transitive pair of edges is called a fork. We can see that the

second addend of the numerator is also a number of forks. Such forks

are located between the vertices of Vo N V; and the vertices of other

clusters.

Let us call the vertices of the sets V;" Vo and V; — V|, the internal апа

external vertices, respectively. Let the set of edges, which connect the

vertices of internal and external vertices, be the main edges.

Definition 4. Let the cluster G;(Vi,U;) be remove-tendentious if
Vo—Vi > Vi.

It is easy to see that the remove-tendentious property is the sufficient

condition for the condition A(G;) > 1. If a cluster is remove-tendentious,
then cutting its main edges is "better" than the connection vertices of the
sets Vo— Vi and V;— Vo.

Let Eo be an eguivalence relation which best approximates a given
symmetric relation R in the sense of the condition of approximation (1).
The Zo is called the optimal partition here.

3. LEMMA

Lemma. If the number of all remove-tendentious clusters G; of the

subgraph G,(V,,U,) is n and

LG)21,1=1,2,..,n, (5)

then there exists a Ey, the class ofwhich is V.

Proof. If G, has only one cluster, then the validity of assertion

follows from Definition 4.

Мо\/ аssите Шал>2, у| = уэ = ... = у„= У ап Ц =5= ...

= 1„= 1.

From the expression of the functionf, (G;) by condition (5) it follows

г< (vo—v)H[vo + (n - 2)v].

Let us prove that

nv(vo — v)[vo + (n — 2)v] < nvvg — (n + Dnv*/2. (6)

Here the left side of the inequality is not less than the sum of the

numbers L;, i = 1,2,..., n. The right side is the number of edges when the
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complete clusters G; are removed from the subgraph G,. We can easily
transform from the inequality (6) that

vivy(n-ID/[(n-2)n+l)+2]. (7)

Note that v < vy/n and substitution to the inequality (7) forms an identity.
The latter result proves the validity of the inequality (6). Now it is clear
that the connection of the sets of external vertices V; — V) and the set

Vo — Vi is not optimal. We can conclude that by the remove-tendentious

property. This completes the proof of the lemma.

Corollary 1.If the number ofclusters is k < n, then the inequality (6)
is likewise true.

4. MAIN THEOREM

To prove the theorem, we use the following proposition: if the sets

of vertices of the clusters Gy, G»,...,G, transpose to new clusters G
such that the new numbers of the main edges are greater than such

numbers formerly, then the probability of removing new clusters G;'
by removing the edges of Uy does not decrease.

Theorem. Ifeach cluster G;, 1€ {l, 2,..., n} ofthe subgraph G, has

DAG)2I,
2) is remove-tendentious,

then there exists a relation E,, where the sets of main edges of the

clusters G; are removed.

Proof. a) We assume now that the subgraph G, contains n equal
clusters G; and each G; has x internal and y external vertices. Let y be the
maximal number of the external vertices. Hence the assertion is true by
the lemma. We may transform from the expression (4) of the function

FX(Gi)

S<(wo—x-y)vo—x)x+Yy, (8)

the first term of which on the right side is the upper bound of the
external vertices sum if the number of clusters is n — 1. Now we increase
the number of external vertices of any cluster by o so that the

assumptions stay true. Let this new cluster be G;'. Now the right side of

the relation (8) will be

[VWOo-x-(y+O)W-x/x+y+o

and we get

(vo—x—=y)(vo—x)/x — 0(vo— x)/x + y + CL 9)

The second term of the connection shows that the sum of external

vertices of the clusters G,, G5,...,G, decreases. Let us replace the sets of

external vertices so that k — 1 clusters similar to G;' arise. The number
of clusters does not increase, so k < n. Note that the last cluster G, may
contain the external vertices less than y + a, therefore the number of the
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main edges of G, is not greater than the corresponding number of G,'.
By the lemma, no one cluster subset forms the optimal partition.

b) Assume again that the subgraph G, has the structure described
above. From the connection (8) and S = ny, it follows

n<(vo—x-—y)vo—x)(xy) + 1. (10)

It is evident that nx < vy. Replacing n by the expression of the right term

of inequality (10) gives

(vo—x—=y)(vo—x)ly + x £ W. (11)

Assume that we add o internal and B external vertices to G,. Let the

result be G,. We shall show that removing the cluster G,' is not

optimal.
It is clear that the sum of the external vertices of the other clusters

decreases. We replace the vertices of the clusters G, G,...,G, to create

k—l clusters, such as G,'. Note that k— 1 < —l. From (10) it follows

k—l<[(vo—x-y—0—B)(vo—x—0))/[(x+o)y+ В)]. (12)

Now we prove that vy is great enough for creating the new clusters, such
as Gr'. We show that k (x + o) < vy. Using the multiplier x + o, from

(12) we transform

k(x+o)<[(vo—x—-y—-o—B)(vop—x—-a)}/(y+B)+x+ @.

Indicate that

[(уо —х—у- @ — В(ио —х — 00))/() +В)+х+ @ < W. (13)

For this is sufficient if

(у —х - у)(уо — х)/у —@- 1 2> [(ио —х-у- @ - B)Yvw —х — /y +B).

(14)

We obtain from the latter

B(vo—x— y)(vo—x) + oty (vo —х) + By (vo—x)+
+@у (уо -х-у-@-В)2у(у + В) + у (у+ В). (15

Note that

1) oty(vo —x) 2 ay(y + B) because by the remove-tendentious property
vo—x—oo2y+ B, it follows that vy — x>o+ B;

2) similarly, By(vo — x) > y(y + B);
3) the fourth term on the left side of the inequality (15) is positive

Бесаисе у) —х— @ > у + В.

It follows that the expression (14) is true. Using the inequality (14) to

(13), by substituting we obtain

(уо —х - у/(ио —х) / у+х - 1 < о,
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which is true by the inequality (11) and so k (x + o) < vy by transitivity
of the expressions. From the lemma it follows that the relation E, does
not contain the classes G,' defined in this part.

c) If the subgraph G,(V,,U,) contains the cluster G,', formed by
adding the o internal vertices to one G, of the equal clusters, then we

may discuss analogously for parts a) and b).
The described replacings of the external and internal vertices

exhaust the structure cases of G,. This completes the proof of the
theorem.

Let us now consider a special case of the subgraph G,. We assume

that G, has p + g = n clusters and

DAGH)21,i=1,2,.,p,
2)(G)<l,j=p+l,p+2,..,p+q.

If we remove the whole clusters Gj, j=p+l, p+2,..., р + д, Феп а

subgraph of G, keeps. Let it be G,. Compute the new values of the

function fo(G)), i=1,2,...,p, and denote those values f,'(G)), i=l,
2,.. P.

Corollary 2. IfG, contains the subgraph G/, and the new values are

P(G)21,i=1,2,...p
then removing the main edges ofclusters G;, i = 1,2,..., p, is optimal.

5. APPLICATIONS

The auxiliary functions discussed here have two common features.
First, they have local nature, because those functions are dealing with
the set of non-transitive pairs of edges of the subgraph G, only. Second,
those functions create a kind of a developing process. If the set of
elimination edges is determined and removed, then the auxiliary
functions may be often used once more in the subgraph G,.

If the source graph G contains such subgraph G, that we can specify
the class of Ejy, then we may remove some set of rows and columns of
the incidence matrix of G. Therefore the degree of matrix representation
is less for the next step of valuations. When Corollary 2 is applicable,
then removing the main edges of clusters G;, i= 1,2,..., p, may change
the values of functions such that on other clusters G, j=p+ 1, p +2,...,
p + g, the theorem will be usable. The next table contains the data оЁ
such G,. The cluster to control the removal is Gg. It 15 easy to see that
after removing the sets of main edges of the clusters G;, i = 1,2,..., 7, we

must remove the main edges of the cluster Gg, too. Finally, one class of
Ео 15 Vo.
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Note. Finding the subgraphs of G, needs effective algorithms to

determine the maximal complete subzgraphs. Those algorithms were

created by L. Vohandu and R. Kuusik [7].
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MONEST PROBLEEMIST SUMMEETRILISE
RELATSIOONI LAHENDAMISEL EKVIVALENTS-

RELATSIOONIGA

Guido VEINER

On kisitletud niisuguse ekvivalentsrelatsiooni Ey leidmist, mis koige
paremini lihendab siimmeetrilist binaarset relatsiooni R tingimusel, et

hulga

{R-Eo} У {Ео-К)
elementide arv oleks minimaalne. On iildistatud varem Kisitletud

teoreem. Kisitluses on kasutatud kolme pohilist abifunktsiooni, mis

lahendavad probleemi iihe relatsioonide klassi puhul.

Part I (vo = 140)

1 2 3 4 5 6 7 8

Vi 1 4 7 15 25 10 20 45

ti 9 9 9 25 15 9 5 65

Li 9° 36 40 375 — 375 90 100 2935

fi(G) 1390 340 299 83 46 13.0 . 60 2.1

fi(Go) 100 33 2.3 2.7 137 1.9 1.3 1.5

£G) 138 103 128 31 28 67 46 0.8

Part II (vo=95)

A(G) 940 228 198 53 . 28 . & 38

A(Go) 99 3.1 2.1 25 14 s

P(G) 95 73 93 21 20 49 35

Values of the functions of the subgraph G,
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НЕКОТОРЫЕ ПРОБЛЕМЫ АППРОКСИМАЦИИ
СИММЕТРИЧНЫХ ОТНОШЕНИЙ ОТНОШЕНИЕМ

ЭКВИВАЛЕНТНОСТИ

Гуйдо ВЕЙНЕР

Рассмотрены проблемы аппроксимации симметричного бинар-
ного отношения R отношением эквивалентности ЕО. Условием

аппроксимации является минимизация числа элементов множества

{К—ЕО} U {EO—R} .

Обобщен ранее полученный автором результат с помощью трех
вспомогательных функций. Эти функции использованы в одном

классе отношений.
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