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Abstract. A fast method of contact mechanics for rough surfaces is presented. The roughness 
beneath each contact element of the discretized contact area is described by a single asperity, 
having the shape of the Abbott Firestone Curve and the modified carrying stiffness for rough 
contact is modelled with the help of bars. The model was verified by solving several example 
problems, showing high computing speed. The number of elements can be changed easily in 
contact area and the repetitiveness of the method for a rough surface is demonstrated. 

Key words: Hertz problem, rough surface, normal indentation, potential function, Abbott Firestone 
Curve. 

1. INTRODUCTION

The microgeometry of surfaces is critical to the success of most manu- 
facturing processes and to the performance of manufactured products. The 
application of the Abbott Firestone Curve (AFC) along with the contact 
mechanics method that uses the potential function superpositions (PFS) is 
combined in order to simulate many kinds of engineering contacts. The contact 
area has been divided into rectangular elements with the constant pressure of 
Love [1] and respective potential function solutions are used in a superposition 
method for the unknown shape of the contact area [2]. This approach uses the  
so-called half-space assumption stating that the neighbouring elements should 
not have dissimilarities in height. If they exist, the magnitude of pressure 
between the elements becomes unrealistically high. Similar problems have been 
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solved before using the matrix inversion method [3] and the variational 
method [4] for arbitrary shapes of contacting objects. The last two methods use  
an outer loop of iterations to enforce the equilibrium constraint, based on the 
boundary conditions. In the present method the bodies are brought into contact 
stepwise with the load being applied in increments permitting the adjustment of 
stiffness, when needed, straight from the initial point contact. The height of a  
flat element can be adjusted, minimizing the height difference of the elements for 
PFS computation. The real surface beneath the element is irregular and an 
additional modelling is carried out. The element stiffness is adjusted by adding a 
bar, which has a stiffness and an approximate contacting area, determined with 
the help of AFC analysis. 

Implementation of the AFC has been originally done for a rigid founda-
tion [5]. In [6,7] this implementation was applied together with the Finite Element 
(FE) wear modelling. The FE method provides material penetration due to the 
normal load and the modelling of surface roughness can be separated as it is 
made in the present work. It is known that solving contact problems for a rough 
surface using the potential functions, which are based on the linear elasticity 
theory, the resulting maximum pressure value is by far overestimated as 
compared to the experiments, especially with steels. The real contact parameters 
have been determined using FE analysis [8] or modelling the softening, 
depending on the roughness properties. Rough surfaces can be handled in  
such a way that the stiffness of each contacting element can be “adjusted” at  
the start of the incremental contact solution (specific for PFS). The contact  
area and the contact pressure distribution of real contacts have been measured 
with an ultrasonic method [9] and may be a way of calibrating the presented 
method. 

 
 

2. THEORY  FOR  THE  PFS  MODEL 
 
Consider two interacting bodies in a Cartesian coordinate system with the 

origin chosen approximately in the centre of the contact locality. The contact area 
is a rectangle (surface matrix) that is large enough to cover the true contact 
region with edges parallel to the x  and y  axes in the xy  plane and is divided 
into m n×  rectangular elements with boundaries 2 2 .ξ η×  The z  axis points 
vertically upwards into the upper body. 

 
2.1. Uniform  pressure  distribution  on  the  subdivision  area 

 
Well-known influence coefficient functions, based on the half-space assump-

tion, are used to determine the relation between the displacement zu  and the 
pressure .p  Each rectangular element is subjected to uniform stress distribution, 
with pressure in the normal direction. The following equation is used: 
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where G  is the shear modulus and ν  is the Poisson ratio. Equation (1) shows the 
relation between displacement zu  and pressure p  for a rectangular contact patch 
with an element area 2 2 ,A η ξ= ×  centred at the origin of the coordinate system 
and subjected to a uniform pressure. 

The logarithmic function ( , )C x y  converts the constant pressure over a 
rectangular area to the deformation field zu  (in this direction only) within the 
bounds −∞  and ∞  and forms a matrix zu  over the contact area. Discrete form 
of ( , )C x y  is denoted by the matrix .C  Matrix C  is real-valued and symmetric. 
The matrix C  has originally dimensions (2 1) (2 1)m n+ × +  and is then reduced 
to the size m n×  at the proper indices as illustrated in Fig. 1 and then used for the 
direct superposition at the contact locality. 

 
 

 
 

Fig. 1. Fit of the matrix C  for the incremental computation point. 
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2.2. Half-space  solution 
 

In the proposed PFS method, the original shape (no inversion) of ( , )C x y  is 
used, operating with what are called scaled displacements, because the pressure 
distribution p  is not known beforehand. The distances between different ,z i ju  
components are constant. The following steps are required. 
1. The position matrices x  and y  are created in order to specify the origin of the 

coordinate system for a number of matrices, among others ,zu  p  etc. 
2. At the start the matrix 0.z =u  
3. The increment step size ,di dj∆δ  is defined for the highest point of overlap, 

indexed with combined indices , ,di dj  where d  is the queue number of the 
step and i  or j  is the position of the element in the contact locality; ,d i  and j  
are used in combination because their magnitude is unique and depends on the 
form of the rough surface. The increment step size can be accumulated into 
the m n×  matrix ,∆δ  where the single increment step size ,di dj∆δ  is 
concatenated with the indices , .di dj  

4. The single increment step size ,di dj∆δ  has a determined magnitude, usually a 
fraction of the overlap. The term overlap means the subtraction of the upper 
body from the lower achieving the points of matrix above the zero level, 
which makes the basis for the contact computation. 
If the load at the given approach is to be found, the upper body is first shifted 

by the size of approach to ensure positive values of the overlap. The single 
increment step with the influence matrix modifies the geometry (displacement 
field ).zu  For every increment step size ,di dj∆δ  in its specific location the 
adaptation of zu  is performed as follows: 
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In the same way as in Eq. (2), the matrices are subtracted cumulatively from the 
overlap. Locations beside the increment steps are affected by the influence 
function and decrease rapidly in the far field by the scaling of the length ,di dj∆δ  
logarithmically, as in Eq. (2). 

The total displacement field zu  increases cumulatively due to this 
neighbouring cell impact for every , :di dj∆δ  
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where 2x∆ ξ=  and 2 .y∆ η=  The increment steps ,di dj∆δ  that are fractions of 
the local maximum of the subtracted height matrices of the two bodies can be 
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converted linearly to the force as presented in Eq. (3). This is valid for the linear-
elastic material model. 

If the approach of the two bodies at the load P  is to be found, the shift of the 
upper body is taken approximately and the condition x y P∆ ∆Σ( ⋅ ⋅ ) ≥p  stops the 
calculation. 
 

 
3. MODELLING  INFLUENCE  OF  THE  SURFACE  ROUGHNESS   

ON  CONTACT  PRESSURE 
 
Surface topography in the microscale is normally quite stochastic and 

statistical methods are needed to determine the parameters for engineering 
applications. The material distribution of a rough surface can be described by the 
“bearing area curve”, AFC. As seen in Fig. 2a, every element of the rough 
surface has different height. In every element additional roughness exists. An 
additional calculation procedure for the sorted asperities, representing the  
AFC in three dimensions, is added. The model can be only two-dimensional 
(single-trace), because the asperities are relatively constantly spread in the y  
direction (Fig. 2b). Higher asperities under a single element come into the contact 
earlier and create the contact areas , ,di djA  consisting of a number of asperities. It 
is assumed that every asperity has the same cross-section. When an incremental 
approach of the two bodies develops, the force ,di djP  of one element contracts 
also the asperities (bars) inside the element by 
 

, ,
, AFC

,

,di dj di dj
di dj

di dj

P L

EA
∆δ =                                        (4) 

 

where the displacement , AFCdi dj∆δ  is added to ,di dj∆δ  of the half-space solu-
tion, ,di djA  is the  effective  contact area starting from the depth 0h  of the size 0A   
 
 

 
  (a)           (b) 

 

Fig. 2. Model for pressure and optionally for a rough surface, where the nodes of interest are in the 
centre of columns (a) and sorted asperities of an element (b). 
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(Fig. 2b), ,di djL  is the length of the bar at the particular approach, E  is the 
modulus of elasticity and ,di djP  is the load on the particular element in the actual 
solution step. The length matrix L  is created assuming Gaussian distribution of 
the asperities. According to the statistical methods, the length ,i jL  is three times 
the standard deviation of the rough field under the element. During the progress 
of the approach, ,i jL  is shortened to ,di djL  due to the compression. 

 
 

4. EXAMPLES 
 

This simple method, validated in this section, offers solutions to various three-
dimensional problems. When two rough elastic bodies are pressed against each 
other, the initial point of contact develops into the area of contact, due to the 
elastic deformation. A three-dimensional state of stress is induced in both bodies. 
The shape of the contact area was originally established by Hertz, who assumed 
that the contact takes place between second-degree surfaces. In this case the 
contact area is an ellipse (with major half-diameter b and the minor half-dia-
meter a). The Hertzian solution is given in [10]. The curvatures radii are 
calculated on the basis of the geometrical form of the contacting bodies. 

 
4.1. Comparison  of  smooth  and  rough  surfaces  using  existing  methods 

 
The contact of a cylinder and barrel under a load of 1600 N is analysed in 

Table 1. This contact is typical for two rollers. Radii 0.035 m and the radius of 
transversal curvature of the upper body 0.125 m was used. 

The results with the smooth surface are summarized in Table 1, rows 1 and 2. 
Here the comparison is made between the Hertzian method and the PFS method. 
The undeformed contacting geometries are shown in Fig. 3a. Deformed geometries 
are shown in Fig. 3b and surface deformations and pressure in Fig. 4. Figures 3 and 
4 are created using the PFS method. A solution for irregular surface by PFS is 
presented in Table 1 (row 3) and in Figs. 5 and 6. The roughness was added to the 
smooth geometries. The standard deviation of the roughness had a base magnitude 
of 0.01 ,x∆⋅  which was an input for the generation of the rough surface. 
Generation of the rough surface is described in [3]. The surface roughness causes 
very high value of the maximum pressure (Table 1). 
 
 

Table 1. Comparison of the smooth geometry and rough surface  
 

 Hertz method Smooth surface Rough surface 

Normal load, N 1600 1600 1600 
Max pressure, MPa 1406 1397 3308 
2b, m 2.88 · 10–3 2.94 · 10–3 2.67 · 10–3 
2a, m 7.56 · 10–4 7.78 · 10–4 7.78 · 10–4 
a/b 0.2625 0.2642 0.2917 
b/a 3.81 3.79 3.43 
Approach, m 1.27 · 10–5 1.27 · 10–5 1.33 · 10–5 



 22

 
 

        (a)               (b) 
 

Fig. 3. Two discs in rigid interference (a) and elastic contact (b). 
 

 
 

        (a)               (b) 
 

Fig. 4. Elastic pressure (a) and total elastic surface displacement of the smooth body (b). 
 

 
 

        (a)               (b) 
 

Fig. 5. Two rough discs in the rigid interference (a) and in the PFS elastic contact (b). 
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        (a)               (b) 
 
Fig. 6. Elastic pressure (a) and elastic surface displacement of the rough body (b) using solely PFS. 

 
4.2. Analysis  of  the  proposed  rough  surface  model 

 
Common way to analyse rough or worn parts starts with the surface measure-

ment. Surface profilometers measure and record the roughness of a surface  
using either stylus or an optical beam. Typically, profilometers provide a  
choice of built-in electronic filters. Several thousand samples per centimetre can 
be measured. The presented method permits a variation in the amount of 
elements in the contact area, where the optimum is around 100 × 100 elements 
and might reach 500 × 500 elements. The elements represent the characteristic 
height for the rough rectangular area. For each element of the discretized  
contact area the mean value of many measurement points is assigned. The 
profilometers micrometer-sized diamond stylus tip acts as a mechanical low-pass 
filter and thus the raw profile is already smoothed to a certain extent prior to 
electronic filtering and also prior to any kind of numerical analysis. For instance, 
measurements with 1 nm step give 10 000 samples per element for the AFC 
analysis when the contact is 1 mm long (in x  direction) and divided into 100 
elements. 

Two main conclusions can be drawn based on the results presented above. 
First, Fig. 7 demonstrates repetitiveness of the pressure contour patterns when 
changing the number of elements in the contact region. 

Second, the half-space assumption of the PFS method is not violated any 
more, when the roughness is modelled with bars. Figure 8 shows the distribu-
tion of the contact pressure when the AFC, modelled with bars, is added to the 
PFS method. The number of elements in contact has risen from 210 to 300 
resulting in the lowering of the maximum pressure from 3.3 (Table 1) to  
2.8 GPa. The contour is not visually enlarged but the “islands” are often grown 
together. 
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        (a)               (b) 
 

Fig. 7. Contour plots of the contact pressure, obtained with the PFS method: (a) 49 × 49 elements; 
(b) 91 × 91 elements. 

 
 

 
 

        (a)               (b) 
 

Fig. 8. Contact pressure distribution obtained applying PFS with AFC modelling, 91 × 91 elements. 
 
 

5. CONCLUSIONS 
 
Implementation of AFC along with the approximate contact mechanics 

calculation method PFS is described. The potential function solutions for 
rectangular contact elements under uniform pressure are used in the PFS method 
for arbitrary (non-elliptical) shapes of the contact area. The additional model 
above the PFS, consisting of single bars on PFS elements is characterized. The 
bar is created on the basis of AFC. The benefit of this method is that the contact-
ing surfaces are not restricted by the limitations associated with the Hertzian 
contact. These limitations (half-space assumption etc.) are also valid for PFS. A 
complete solution for the elastic rough surface is proposed. 

The repetitiveness of the pressure distribution with different numbers of the 
elements has been demonstrated. The bigger the element the more measurement 
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samples can be included in the AFC analysis. The contour pattern of the contact 
pressure in the combined method remains complicated but looks very similar to 
the pressure distribution produced solely by the PFS method. The next step is to 
model plasticity of a rough surface in a similar manner. Plasticity under the 
surface becomes more and more dominant when increasing the load. When 
looking for the “true contact area” and for the “true pressure distribution”, all of 
these models should work together. 
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Mõjufunktsioonide  liitmistel  põhinev  kareda   
pinna  mudel 

 
Tanel Telliskivi ja Priit Põdra 

 
On esitatud ligikaudne ekspressmeetod karedate pindade kontaktmehaanika 

analüüsimiseks. Karedate pindadega kehade mehaanilise kontakti parameetrite 
määramisel on pinnakihtide jäikusel sisekihtide omaga võrreldes oluliselt suurem 
osatähtsus. Pinnakareduse modelleerimisel asendatakse siin diskretiseeritud 
kontaktala igale elemendile vastav tegelik pinnakaredus ühe summaarse pinna-
konarusega, mille kuju vastab selle elemendi pinnatopograafia Abbotti kõverale. 
Selle põhjal kujundatakse iga pinnaelemendi jäikus. Meetodi usaldusväärsust on 
tõestatud mitme näidisülesande lahendamisega. Meetodi peamisteks eelisteks on 
arvutuse kiirus ja võimalus kontaktala elementide arvu hõlpsasti muuta. See teeb 
tulemused jälgitavaks mudeli rakendamisel nii siledate kui ka karedate pindade 
kontaktmehaanika modelleerimisel. 


