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Abstract. This two-part paper addresses characteristic properties of time-critical software-intensive 
systems (e.g. embedded, real-time, remote monitoring and diagnosis systems). These properties lie 
in the interface between systems engineering and software engineering. The first part of the paper 
pinpoints existing problems, the second one discusses potential resolution routes. The first part 
starts from observations of the current systems development process with the focus on stages for 
specification of requirements and design. The key problem, in addition to the increase of the overall 
complexity of systems, is the increasing role of emergent (e.g. non-predictable) system behaviour, 
its causes and methods for maintaining better control over the system emergent behaviour.  
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1. OBSERVATIONS  ON  ADVANCES  IN  SYSTEMS  DEVELOPMENT 
 
It has been widely accepted that an increasing number of contemporary 

societal, business and defence infrastructures, instrumental devices, household 
appliances and technological processes are essentially software intensive. Many 
new materials and products can be produced only due to software-intensive 
technologies. The borderline between hard- and software implementation is 
dispersing. There are evidences that disciplines, evolving rather independently 
for several decades, e.g. computer science, artificial intelligence, control theory, 
systems engineering and software engineering, are today being mixed to better 
satisfy the system design goals. This is an interesting period where the hitherto 
separately involved theoretical disciplines must evolve jointly to explain the 
phenomena observed and solve problems, detected empirically in computer 
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applications where the computer directly and persistently interacts with its 
environment. 

The start of the new millennium has already given rise to a number of 
progress evaluations in several domains. The use of digital computers in real-
time control has already been addressed in several review papers [1–5]. Still, some 
fundamental advances and changes in systems characteristics and development 
process deserve more attention.  

First of all, one should note the strongly increasing complexity of the systems 
that are being developed and used. Boeing 777, for example, has over one 
thousand embedded processors and over four million lines of software to control 
subsystems and to aid pilots in flight management. Each of these subsystems has 
a specific task. Some subsystems are present in multiple copies to provide 
reliability through redundancy (whereas the synchronization between those 
redundant subsystems poses interesting theoretical and practical problems). All 
the subsystems are working together, both on board of the aircraft and outside it; 
for example, interacting with flight control and guidance systems, etc. Such a 
complexity has developed gradually as the requirements to computer systems 
have grown in numbers and strictness due to the persistently increasing number 
of functions that are trusted to computers. This complexity requires specific 
attention during the system development process, so as to ensure that all require-
ments are really met and that no side effects will occur. It is therefore necessary 
to guide the design of these complex systems with a solid, coordinated design 
approach that allows for a proper verification and validation process. Such a 
complexity needs specific attention also during the operation of the system – 
automatic diagnosis, potential dynamic reconfiguration of the system, etc. – that 
must include some elements of on-line verification and validation to function 
properly. Less technical examples of complex systems come from the domain of 
computational modelling, where computer systems and their software is used as a 
model of a natural phenomenon, e.g. the model for fission reaction, models used 
in material design, the physiological model of a human, etc. 

Then, there is a rising interest in systems-on-chip devices, where several parts 
of a system are combined on one chip. These chips are then integrated into other 
systems in an embedded manner in order to fulfil several subtasks. A good 
example is a full-blown self-organizing map neural network with dedicated 
processing management and DSP front end, all on one chip. This type of devices 
is now targeting the industrial market and there is an evident need to support the 
design of the architecture of such devices (e.g. to specify functionality of 
individual blocks of a system-on-chip, to define relations and interactions of such 
blocks, to specify the outside relations of a system-on-chip) and the support for 
designing systems using such components. For instance, methods and tools, 
which support the integration of systems-on-chip into larger (embedded) systems 
and help to ensure proper data communication with other systems and with their 
environment, are still in their infancy. History has already shown negative 
examples where very efficient data acquisition means were available in such a 
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chip, very efficient computing power was present, but no means were provided to 
transfer the acquired and pre-processed data efficiently from the chip to the 
advanced processing part of the system. In such cases the system did not reach its 
target, additional external components were to be included, and integrated at a 
huge cost to fulfil the system requirements. 

The abovementioned problems arose, at least partially, because the used 
design tools and the underlying theory (conventional algorithm-centred model of 
computation) were not appropriate for embedded applications, where the stream 
processing is required. Guaranteed success of system design from systems-on-
chips and other (pro-)active components assumes the application of interaction-
centred models of computation that would better support the analysis of 
(multiple-simultaneous) stream processing. 

The development of embedded real-time systems and the corresponding need 
for a coordinated design, verification and validation are extremely important for 
industry, and indeed for society, which determines the safety criteria for such 
applications. There is an evident need for formal analysis in the development of 
real-time systems, although computer science still does not provide adequate 
tools that support formal analysis of embedded systems (see the examples given 
by Tennenhouse in [6]). In many cases when the computing power is insufficient 
for a given application, mere moving to more powerful processors will not 
improve the situation. Besides, in an industrial environment the use of more 
powerful processors is frequently not acceptable for economical or technical (e.g. 
excessive heat emission) reasons. In addition, there is a natural tendency that the 
user asks for more, and more complex, tasks to be solved once a more powerful 
processor is available. The problem will therefore eventually come back. 

The need for a coordinated approach in the development of embedded real-
time systems, that is based on considering the entire surrounding infrastructure 
(communications, smart devices, computers at distance, etc.), is therefore 
evident. Evaluating the state-of-the-art techniques developed over the last ten 
years, the limitations imposed by the existing underlying theory and available 
tools for designing and analysing the applications at hand become quickly 
apparent. This statement is also supported by increasing popularity of interaction-
centred models of computation (that include embedded systems as a special case) 
in computer science and software engineering, as demonstrated in [7]. The 
expressive and analysing power of those models explain the success of object-
oriented design and programming, and enable timing analysis of interactions, 
among many other things. Before such techniques are mature enough to be 
introduced to industry, substantial research still needs to be done. 

One can also observe increasing use of the so-called intelligent techniques 
within different real-time applications. These techniques, grouped under the 
common name of artificial intelligence (AI) techniques, allow for the intro-
duction of reasoning approaches that are complementary to hitherto applied 
algorithmic approaches. High-end developer tools target the market by allowing 
to develop expert systems to be applied in time-critical tasks, using high-level 
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knowledge, such as operator knowledge, or neural networks based on learning 
sets of data [8]. Current state of the art of AI tools allows for specification of 
knowledge (rules, cases, input/output data pairs, etc.), but hardly ever touch on 
the systems design and actual software engineering processes. Algorithms have 
been developed for many important problems in artificial intelligence, such as 
search algorithms, automatic and interactive theorem proving systems and others. 
In knowledge engineering, a similar state of maturity has not been reached yet. 

Still, practical cases of using agent-based reasoning, approximate, any-time 
and time-constraint reasoning about knowledge, and the related concepts of 
intelligent interaction and ontology of components are the signs of coming 
changes. The shift in the character of practical applications has caused the move 
of AI researchers from algorithm-centred approaches to the agent-based (i.e. 
interaction-centred) ones that are more sophisticated. This is in accordance with 
the evolution of software engineering and computer science, from algorithm-
centred programming languages and models of computation to object-oriented 
programming languages and interaction-centred models of computation. The new 
approach also supports handling of components with incomplete information 
about their own properties and about the properties of their interaction partners. 
At the same time this evolution leads to new problems, such as the necessity to 
use higher-order logic [9,10] and introduction of the time awareness into models 
and methods [11]. The emergence of new models of computation has pointed out 
the necessity of time modelling and philosophy-related digital problems, 
discussed in [12–14], that should not be overlooked. 

Knowledge engineering becomes even more complicated when realizing that 
knowledge can almost never completely be modelled using only one representation 
technique. The simultaneous use of multiple-knowledge representation techniques 
deserves attention. Information, needed in automation, comes from different 
sources and is available in symbolic or numerical format, each source covering a 
part of the current state. For each type of knowledge an appropriate set of 
representation techniques, matching its characteristics, should be found. 

However, this brings forward an additional problem for systems engineering – 
many enabling theories (e.g. AI and control theory) focus on rather small parts of 
a system, leaving integration problems of multiple theories with their multiple 
and accumulating approximations and multiple views on information representa-
tions to systems and software engineers. Partial support to resolving this situation 
comes from the Unified Modelling Language (UML) paradigm, developed as a 
design tool in software engineering and increasingly used more widely [14]. 

Finally, it should be noted that contemporary computer systems rarely func-
tion in isolation; instead they are almost always collaborating with their environ-
ment, interacting with other systems (comprising sensors, actuators, hardware, 
software, human operators, natural processes, etc.). During the design process of 
a system, at a certain moment the integration of different subsystems needs to be 
addressed (component-based design, reuse of software and COTS-based design 
are typical examples that lead to the analysis of integration problems) as 
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discussed in [15,16]. This entails “matching” the characteristics of the system 
under development with the characteristics of the collaborating and interacting 
systems, making sure that the integral behaviour of cooperating systems will 
adhere to the requirements and will meet all the given constraints, etc. 

It should be noted that many design and run-time problems in complex systems 
actually stem from incomplete match of properties of the interacting partners or are 
found at the interfaces between different subsystems or components. Another 
example of malicious and difficult to detect subset of integration problems stem 
from not quite coherent theories and their approximations as being used in different 
interacting components. 

There is an evident need for a coordinated, structured design approach that 
takes into account the variety of integration issues in a clear and transparent 
manner, and that allows for analysing the impact of alternative design choices. One 
should also address the rapidly increasing autonomy, intelligence, selfishness, and 
proactive behaviour of system components as described, for instance, in [17]; that 
may substantially influence system architecture and is an explicit source of 
incomplete information in a well-designed system. Incomplete information in a 
system will add to emergent behaviour that results form interactions between 
autonomous and proactive components of the system during its operation, and 
cannot be deduced from the given finite design description of the system. 

In a nutshell, the new software-intensive systems can be characterized, based 
on the observations discussed above, by the following features: 
–  increasing number of new products, systems, devices, and their components 

(building blocks) are software-intensive, meaning that their functionality is 
essentially determined by software; 

–  as a rule, the software is directly interacting with (i.e. monitoring and 
influencing) the environment, this emphasizes the role of stream processing as 
opposed to conventional string processing; 

–  remarkable increase in the complexity of such systems, including intrinsic 
complexity, can be observed – for instance, the increasing role of emergent 
behaviour that is generated dynamically and can not be deduced from the 
static description of the system; 

–  the interaction of (autonomous, proactive) components has a major role in 
determining the systems behaviour, reducing correspondingly the role of 
separate algorithms in the overall behavioural pattern of systems; 

–  there are clear indications that modelling techniques emerging in software 
engineering, systems engineering and knowledge engineering focus on 
integration of multiple views and techniques; 

–  the research focus is moving from research of isolated problem solving 
algorithms to integration of algorithms into a system so that prefixed system 
properties will be achieved as precisely and economically as technically 
possible. 
The above-mentioned issues that represent the essence of evolution trends 

observable in software-intensive systems as built for embedded and time-critical 
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applications (but also for many proactive, autonomous and pervasive computing 
systems) form the basis for identification of perspective research issues, dis-
cussed further in this paper.  

 
 

2. TASKS  FOR  A  SYSTEM  DESIGN  ENVIRONMENT 
 
There is a strong need for tools that would provide the designer of industrial 

systems with overall theoretical and practical support in system and software 
engineering. Bits and pieces of this approach already exist and are applicable at 
several stages of system development. However, the overall framework, that 
allows for proper support during the multiple stages of the system development 
cycle, e.g. specification, analysis, design, implementation, testing, and at the 
same time would promote representation and comparative analysis of different 
architectures and components, is still missing. Such a framework should be 
concerned with large (potentially embedded) computing systems with an 
objective to handle all the major aspects of system development – starting from 
the initial idea of a system up to the fully described, verified, implemented and 
validated system that meets the user requirements, including the quality of 
service (QoS) requirements imposed on fault-tolerance, safety, security, etc. This 
development framework should satisfy the features of the contemporary 
software-intensive systems listed in the previous section of this paper. 

Starting questions should focus on how to handle the ever-increasing 
complexity, on the analysing methods that enable better understanding of the 
reasons that influence system behaviour, and better prediction of the actual 
behaviour. This involves several aspects of system representation, taking into 
account both functional aspects as well as QoS aspects (such as timing correct-
ness, fault-tolerance, safety, security, etc.). Quite often, QoS requirements can be 
satisfied only if one can analyse and control the intensity of the emergent 
behaviour. 

System description should also include the processing of location-dependent 
aspects, concerning the manner in which the physical or logical locations of 
components within a complete system are described and how the connections of 
the components depend on their locations. In many cases such details may have 
an impact on the system behaviour. For instance, consider the impact of a 
component failure at a given location (e.g. a wagon of a train) that causes the 
occurrence of a symptom elsewhere (e.g. in another wagon), or interactions of 
autonomously moving vehicles. This type of information has been shown to be of 
vital importance in the success of system development in the project 
BRIDGE [18]. Good progress has been achieved already in the analysis of the 
logical behaviour of systems, but for the formal analysis of time and location 
aspects the progress is not as good. 

The system designer faces a constant need for compromises by selection of 
tasks to be performed, their implementation either in hardware or in software, 
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selection of communication media to be used, selection of methods for the 
assessment of the progress in system development, etc. The compromises may be 
affected by technical or economical limitations or even by subjective preferences 
of the endusers of the designed system. It might be that a choice is made for 
digital signal processing techniques instead of a hardware component (usually 
based on analogue processing), or an ASIC chip is used instead of a piece of 
software-implemented production rules in an expert system, etc. This means that 
particular architectural (and algorithmic) choices will be finally fixed only during 
the system design and testing process. It should be noted here that the design 
engineer is frequently left without any supporting tool that would help to fore-
cast, early at the design stage, the realistic impact of the alternative design 
choices on the behaviour of the system.  

An additional factor, often neglected in academic studies but very important 
in practice, concerns the strictly limited development time, assigned for many 
industrial projects. Sometimes, over a limited period of time, a high number of 
software packages with still evolving contents are delivered to the customer, 
frequently on still evolving hardware platforms. This imposes a seriously reduced 
time frame for the design, development and validation of the software, as well as 
its integration with surrounding systems. Within this framework, under the time 
pressure a good supporting design environment has an even greater value. There 
is some light at the end of the tunnel – new evolving system development 
technologies based on UML, for instance [19,20], are promising. 

The industry is aware of the necessity to introduce proper system and software 
development approaches. This is underlined by the eagerness to obtain and show 
Capability Maturity Model (CMM) levels, and other measures for maturity in 
system development processes, requirements traceability, etc. Many companies 
that were between levels 1 (initiation) and 2 (defined at project level) have 
shifted during the last few years to the levels 2 and 3 (defined at company level). 
This is a clear illustration of industry’s adherence to system and software 
development processes. Another illustration is the strong support to Object 
Management Group (OMG) and wide acceptance of UML, the related software 
products (e.g. [14]), and a software process adapted to the new technology, 
developed by this consortium for the industrial use. 

Software engineering attempts hard to move software production process 
closer to the reliability and predictability level, achieved in other engineering 
disciplines (e.g. in civil and mechanical engineering). Whereas progress has been 
quite smooth in data and information processing software, the embedded soft-
ware and other software-intensive products have suffered difficulties. Ironically, 
the major obstacle to the progress has been the incoherence between the theory 
(algorithm-centred mainstream of computer science in the last century), 
essentially different computing process in new applications (stream-based instead 
of string-based computing), and the increasingly component-based practice of 
software production. Only in 1990s the new paradigm (interaction-centred 
computation) has gained wider acceptance and, at least in principle, coherence 
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between the solved tasks, goals to be achieved, applied theory, and available 
tools have started to develop. Today, the theoretical foundations for the new 
paradigm are still developing [9,21] and are not yet sufficiently mature to be 
applied in building industrial systems and software engineering tools for 
industrial use. The experimental applications however, have been promising – a 
discussion of this topic is presented in the second part of this paper. 

Unfortunately, over the same time, the problems to be solved and the 
architectures to be handled have been getting more complex as well, asking for 
well-elaborated approaches. Some of the new problems were characterized 
earlier in this section. Somewhat different aspects of new computer applications 
are emphasized in [6] by discussing the “movement from human-centred comput-
ing to human-supervised (or even unsupervised) computing”. Techniques and 
tools that are being used for system engineering, have an effect not only on the 
problem-solving ability of a designer, but also on avoidance and detection of 
errors that are made during problem solving. Thus it is clear that these tools and 
methods should also cater for human limitations and capabilities. These issues 
are referred to as cognitive engineering, which term combines ideas from system 
engineering, cognitive psychology, and other human factors related research. 

Many of the arising problems originate from the insufficient integration of 
software engineering, system engineering and cognitive engineering in the build-
ing process of complex systems. The problems often arise in the interfaces 
between the components, where the components may be of hardware, software, 
environment, or human origin. These problems are often caused by incompletely 
matched ontology of the interacting components. This all leads to the search of 
methodologies that would foster coordinated design of the components, inter-
faces and interactions between the components, and that would provide seamless 
transitions and mappings between the disciplines involved. Emerging theoretical 
and technological trends, such as interaction-centred models of computation, 
agent-based reasoning methods, proactive computations and ontology of inter-
actions also support the aforementioned ideas. In addition to theoretical research, 
several initiatives on new computing technologies have been launched recently 
(for instance, proactive computing [6,22] and autonomic computing [23]). 

Looking at software-intensive systems from an overall systems point of view, 
every aspect and part of the overall system has to be assessed for correct 
functioning and reliability; e.g. the process to be controlled must be understood 
with sufficient precision, equipment used to monitor and influence the controlled 
process must be correctly interfaced with the environment and with the computer 
system and dynamic properties of the software must be matched with those of the 
environment and the interfacing equipment. All systems will eventually have 
failures, either on system or on component level, related to the technological 
limits and the limits of the knowledge about the system. This means that theories, 
technologies, and the tools used for system development and pre-implementation 
analysis of the system design must support all the aforementioned aspects. New 
theories and technologies are emerging but, at the moment, there are no tools of 
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the required analysis power available for the industry. Majority of the available 
tools are still based on models of computation (e.g. Turing machines with slight 
extensions [21]) that have insufficient expressive and analysis power for handling 
new software-intensive systems. 

Note that these observations apply to a broader scale than just to embedded 
real-time systems. Software-intensive systems development for operation in a 
“non-real-time environment” needs to resolve very similar multidisciplinary 
design problems, compromise of the resources to be applied for a given task 
(software, hardware or human) and validation and verification in safety-critical 
applications. Although system safety engineering techniques have existed for 
decades, changes and extensions are required in techniques used for systems that 
contain digital computers and software. System design should therefore comprise 
topics such as modelling and analysis of safety, system and software require-
ments specification, safe software design, software fault tolerance, and verifica-
tion and validation of safety. Safety topics should be seamlessly integrated into 
the research of system architecture. In addition to long-known safety problems, 
contemporary systems often fail in security issues. The security issues have 
become as important as safety issues and need remarkably more attention in 
system design. 

This section focused on the designer’s expectations with respect to integrated 
systems design environment. The majority of software-intensive systems comprise 
highly multidisciplinary knowledge and corresponding theories. The designers of 
such systems often face unexpected behaviour of the system due to cumulative 
approximation errors invoked by integrated use of many approximately imple-
mented theories and methods, e.g. loss of stability in a control algorithm due to 
excessive jitter of time unit (as used by a discrete time theory based algorithm). 
Commercially available design environments are pretty helpless in analysing such 
phenomena. Designers have a serious need to get automated support in comparing 
the effects of alternative design decisions and compromises on the system 
behaviour. Finally, computing-related part of the system design support suffers 
from an obvious mismatch between the available theory of computing and the 
essence of the problem to be solved. 

 
 

3. NEED  FOR  NEW  MODELS  OF  COMPUTATION 
 
Looking at the essence of modern computer control systems, communication 

systems, contemporary multi-media applications, distributed (artificial intelligence) 
systems and others, one cannot overlook the influence of time constraints imposed 
upon their behaviour. There are two major causes for the introduction of time 
constraints [24]: 
–  necessity to match the behaviour of a computer system with that of its 

independently functioning interaction partners in the environment, whose 
behaviour is to be influenced by the computer system; 
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–  to represent the incompletely known, or too sophisticated, causal relations 
approximately; for instance, those that determine invocation of the system 
components, and synchronization of various interacting activities between the 
partners. 
As a consequence, the designer has to deal with the construction of a time-

constraint concurrent software system that may have safety- and time-critical and 
fault-tolerant features that need verification. As a precondition to verification of 
time-constraint software one needs time-sensitive models of computation. It has 
been explained earlier in this paper that time-sensitive models of computation 
should, at the same time, be preferably also interaction-centred and not 
algorithm-centred, as they conventionally are. 

It should be noted that conventional theories of computer science and tools in 
software engineering are not able to address the full suite of timing issues, as the 
role of time has been reduced to minimum in those theories and tools since the 
canonization of the algorithm theory as the basis for computer science in the 
1960s [25]. Therefore the timing issues in software-intensive systems and in 
common software have been addressed, in the majority of cases, only partially – up 
to the point that is possible in the conventional algorithm theory. This means that 
performance and scheduling issues have been addressed, whereas timing of interac-
tions and validity intervals for events and data have been usually neglected. 

Rapidly increasing complexity of software-intensive systems, growing 
popularity of building systems from (autonomously and proactively functioning) 
components, wide acceptance of the object-oriented design methodology [14] 
together with the increasing role of safety, security, and time-awareness issues 
and improved theoretical understanding of the essence of computing, has given 
rise to studies in interaction-centred models of computing and in the correspond-
ing system design paradigm. In fact, the first attempt to emphasize the role of 
interactions in computation can be dated back to the end of 1930s, e.g. Turing’s 
choice machine [26]. The second attempt started by end of the 1970s; a summary 
of five-year developments in interaction-centred models of computation is 
published in [27] and the first time-sensitive, empirical, interaction-centred model 
is published in [28]. 

 
3.1. Interaction-centred  models  of  computation 

 
Component-based architectures, object-oriented design and implementation 

methods, increasing autonomy and pro-activeness of components are the basic 
sources of difficulties hindering the application of algorithm-centred models of 
computation for the analysis of system properties. Actually, the difficulties are 
caused by an attempt to apply prescriptive specification in the case where only 
behavioural specification is applicable. The above-listed methods and technol-
ogies enable explicit handling of incompletely known causal relations. The 
designer of such systems cannot avoid the presence of the incompletely known 
inner structure and pro-activity invoked properties of components, externally 
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invoked methods in objects and dependence of the components behaviour on the 
history of computations. Quite often components exhibit indefinitely ongoing 
behaviour, not necessarily strictly coordinated with that of the other components 
they interact with. In many cases, ongoing behaviour can be considered as a 
cyclic or sporadic repetition for indefinitely many times of a finite set of 
algorithmically described activities. Interactions between the components with 
ongoing behaviour lead in many practical cases to the necessity of time-selective 
interactions as demonstrated in [10]. 

The connections between the components in a system are usually static; 
however, the connections do not describe unambiguously the behaviour of 
systems. The system behaviour depends, to a large extent, on the actual semantic 
contents of messages exchanged during a particular interaction act performed 
between connected components during the operation of the system. Such systems 
exhibit the so-called emergent behaviour, i.e. a behaviour that cannot be deduced 
from the description of the static structure of the system. There can often be a 
countable number of emergent behaviours; therefore verification of behavioural 
properties of such systems needs innovative approach as compared to methods 
applied for conventional programs, whose behaviours can be deduced from the 
prescribed static structure of the program.  

Several authors have suggested that serious extensions to the existing models 
of computation are necessary so as to address explicitly interactions, emergent 
behaviour and more subtle timing constraints (imposed upon the interactions). 
These extended models should exceed conventional algorithm-centred models 
both in formal description power and analysis power. As a rule, those models 
describe indefinitely ongoing computations on interaction machines as defined 
in [9] instead of using the conventional Turing machine. Interaction machine can 
be either sequential or multistream interaction machine. Two Turing machines 
that jointly process a data stream can model a simple sequential interaction 
machine (called the persistent Turing machine), if those Turing machines, while 
processing the stream, are communicating via an independently operating 
proactive device (e.g. an active filter) with memory. This means that the input of 
the second Turing machine may depend on the pre-history of computations on 
the first Turing machine. The notion “Universal Turing Machine”, introduced by 
Chaitin in [12], is intuitively close to the multistream interaction machine notion 
as introduced in [9]. 

Interactive computing can be viewed as agent-based processing of streams, as 
opposed to the algorithmic computing where an input string (i.e. an element of 
the input stream) is processed. The output string (an element of the output 
stream) is generated and then the algorithm terminates with no memories of the 
past. The input/output stream processing emphasizes the persistent nature of 
computing. Characteristic to interactive computing is the phenomenon of 
emergent behaviour. The following features are typically present in interaction-
centred computations and are absent from algorithm-centred computations: 
–  (multiple) stream input-output for a computing agent; 
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–  interleaving of inputs and outputs during computations is natural; 
–  history-dependent behaviour of the computing agents.  

Processes that exhibit above-listed properties are hard to describe and even 
harder to analyse in algorithm-centred models (for instance, learning and adapta-
tion in a system) and can naturally be presented in interaction-centred models. 

Academic research of interaction-centred models of computation has been 
quite intensive. For instance, Milner developed a π-calculus [29,30] that extends 
his interaction-centred model [27] to mobile, autonomous computing agents. 
Wegner [31] clarified the philosophical background of interaction-centred com-
puting. Goldin and colleagues [32] demonstrated that the modelling power of 
UML descriptions corresponds to that of interaction machines. The essence and 
practical presentation aspects of interaction machines has been clarified by many 
authors [9,33–36]; however, the area of interaction machines is still open to 
research.  

So far the research in this area has been mostly focused on theoretical-
philosophical aspects of interaction-centred computing and has not yet led to 
tools that perform formal analysis on systems described in terms of interaction 
machines. Necessity to accelerate progress in formal analysis is soon moving to 
the focus of system and software engineering. This is partially caused by OMG 
that launched a large-scale project, focused on developing a new methodology 
(see http://www.omg.org/mda/) for designing software-intensive systems that 
assumes the availability of formal verification at the specification and design 
stages. In addition, most of the computer applications in industry need remark-
ably wider support from formal analysis – the complexity of those applications 
demands combining of testing with formal methods to reach the required level  
of QoS. 

A conventional computing system is based on algorithms and completely 
known causal relations between algorithms. Those causal relations determine 
admissible permutations in interleaving input and output streams (i.e. admissible 
concurrency of computations). When some causal relations are not completely 
known, the designer cannot precisely know which of the occurring permutations 
are admissible. This difficulty is directly related to permutations, potentially 
occurring when a system performs forced concurrency. The forced concurrency 
is a normal operation mode of multi-stream interaction machines, when physical 
processes in the environment (and not the designer, or available number of 
processors) determine the number of concurrent computing processes, called 
forced concurrency in [10] and true concurrency in [9]. 

To verify, in the general case, the forced concurrent mode of processing in 
software-intensive systems, one needs a separate time-counting system for each 
stream – this causes introduction of the sophisticated time model [13] to the 
system description. Similarly, the corresponding interaction-centred model of 
computation has to be time aware. For instance, time-selective exchange of 
information between concurrently processed streams, as a side effect of forced 
concurrency leads to checking the validity time of transmitted information. Time-
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correctness of the behaviour of such systems cannot be demonstrated by testing 
only. One also needs formal verification enabled by a time-aware, interaction-
centred model of computation [10]. 

 
 

4. CONCLUSIONS 
 
Rapidly increasing number of systems and commodity products essentially 

depends on computers and software (so-called software-intensive systems). This 
means that the functionality of those systems and products is actually determined 
by software. Part 1 of the paper surveyed the basic characteristics of such 
systems, deduced the basic new requirements to the system architecture and 
software, and assessed the available theory, technology and methods for building 
such systems. Based on those characteristics, requirements, and assessment the 
paper sketched main evolution trends in the underlying theory of computation 
and technologies used in systems and software engineering. 

In a nutshell, theory of computation moves from the algorithm-centred 
paradigm to the interaction-centred paradigm, systems and software engineering 
is focusing on problems related to increased use of proactive building blocks. 
The mentioned trends are strongly influenced by interdisciplinary efforts to 
create proactive (software) components, enable their collaboration in a system, 
and guarantee that the system satisfies the expectations of its users. Part 2 of this 
paper focuses on a survey and discussions on those interdisciplinary efforts in 
developing and testing new theories and technologies to support the designers of 
such systems. 
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Sardsüsteemide  arendustehnoloogia  kitsaskohad.   
1.  osa:  Hetkeseis  ja  üldtrendid 

 
Leo Mõtus, Robertus A. Vingerhoeds ja Merik Meriste 

 
Selles kaheosalises artiklis on analüüsitud ajakriitiliste tarkvaramahukate 

süsteemide võtmeprobleeme, mis paiknevad kasutatava süsteemitehnika ja tark-
varatehnika ülekattealal. Taoliste süsteemide rakenduste näideteks on arvuti poolt 
juhitavad liikuvad seadmed, tehnoloogiliste protsesside juhtimissüsteemid, 
meditsiiniaparatuur, robotid, koduelektroonika, mobiiltelefonid, looduskesk-
konnaseire jms. Artikli esimeses osas on esile toodud teoreetilised ja tehnoloo-
gilised kitsaskohad. Käsitlus baseerub eksisteerivate süsteemide analüüsil, milles 
eriline tähelepanu on suunatud spetsifitseerimis- ja projekteerimisetappidele. Uus 
raskelt analüüsitav omadus, mis iseloomustab tarkvaramahukaid süsteeme, on 
ilmnev käitumine, mis ei ole ennustatav süsteemi staatilisest kirjeldusest, vaid 
tekib dünaamiliselt süsteemi töö käigus. 

  
 


