
 3

Proc. Estonian Acad. Sci. Eng., 2005, 11, 1, 3–17

Challenges for real-time systems engineering.
Part 1: State of the art

Leo Motusa, Robertus A. Vingerhoedsb and Merik Meristec

a Department of Computer Control, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn,

Estonia; leo.motus@dcc.ttu.ee
b Ecole Nationale d’Ingénieurs, Av. d’Azereix, 65016 Tarbes, France; eaai@wanadoo.fr
c Institute of Technology, University of Tartu, 50090 Tartu, Estonia; merik.meriste@ut.ee

Received 26 March 2003

Abstract. This two-part paper addresses characteristic properties of time-critical software-intensive
systems (e.g. embedded, real-time, remote monitoring and diagnosis systems). These properties lie
in the interface between systems engineering and software engineering. The first part of the paper
pinpoints existing problems, the second one discusses potential resolution routes. The first part
starts from observations of the current systems development process with the focus on stages for
specification of requirements and design. The key problem, in addition to the increase of the overall
complexity of systems, is the increasing role of emergent (e.g. non-predictable) system behaviour,
its causes and methods for maintaining better control over the system emergent behaviour.

Key words: real-time systems, time-critical systems, proactive components, interactive computing.

1. OBSERVATIONS ON ADVANCES IN SYSTEMS DEVELOPMENT

It has been widely accepted that an increasing number of contemporary

societal, business and defence infrastructures, instrumental devices, household
appliances and technological processes are essentially software intensive. Many
new materials and products can be produced only due to software-intensive
technologies. The borderline between hard- and software implementation is
dispersing. There are evidences that disciplines, evolving rather independently
for several decades, e.g. computer science, artificial intelligence, control theory,
systems engineering and software engineering, are today being mixed to better
satisfy the system design goals. This is an interesting period where the hitherto
separately involved theoretical disciplines must evolve jointly to explain the
phenomena observed and solve problems, detected empirically in computer

 4

applications where the computer directly and persistently interacts with its
environment.

The start of the new millennium has already given rise to a number of
progress evaluations in several domains. The use of digital computers in real-
time control has already been addressed in several review papers [1–5]. Still, some
fundamental advances and changes in systems characteristics and development
process deserve more attention.

First of all, one should note the strongly increasing complexity of the systems
that are being developed and used. Boeing 777, for example, has over one
thousand embedded processors and over four million lines of software to control
subsystems and to aid pilots in flight management. Each of these subsystems has
a specific task. Some subsystems are present in multiple copies to provide
reliability through redundancy (whereas the synchronization between those
redundant subsystems poses interesting theoretical and practical problems). All
the subsystems are working together, both on board of the aircraft and outside it;
for example, interacting with flight control and guidance systems, etc. Such a
complexity has developed gradually as the requirements to computer systems
have grown in numbers and strictness due to the persistently increasing number
of functions that are trusted to computers. This complexity requires specific
attention during the system development process, so as to ensure that all require-
ments are really met and that no side effects will occur. It is therefore necessary
to guide the design of these complex systems with a solid, coordinated design
approach that allows for a proper verification and validation process. Such a
complexity needs specific attention also during the operation of the system –
automatic diagnosis, potential dynamic reconfiguration of the system, etc. – that
must include some elements of on-line verification and validation to function
properly. Less technical examples of complex systems come from the domain of
computational modelling, where computer systems and their software is used as a
model of a natural phenomenon, e.g. the model for fission reaction, models used
in material design, the physiological model of a human, etc.

Then, there is a rising interest in systems-on-chip devices, where several parts
of a system are combined on one chip. These chips are then integrated into other
systems in an embedded manner in order to fulfil several subtasks. A good
example is a full-blown self-organizing map neural network with dedicated
processing management and DSP front end, all on one chip. This type of devices
is now targeting the industrial market and there is an evident need to support the
design of the architecture of such devices (e.g. to specify functionality of
individual blocks of a system-on-chip, to define relations and interactions of such
blocks, to specify the outside relations of a system-on-chip) and the support for
designing systems using such components. For instance, methods and tools,
which support the integration of systems-on-chip into larger (embedded) systems
and help to ensure proper data communication with other systems and with their
environment, are still in their infancy. History has already shown negative
examples where very efficient data acquisition means were available in such a

 5

chip, very efficient computing power was present, but no means were provided to
transfer the acquired and pre-processed data efficiently from the chip to the
advanced processing part of the system. In such cases the system did not reach its
target, additional external components were to be included, and integrated at a
huge cost to fulfil the system requirements.

The abovementioned problems arose, at least partially, because the used
design tools and the underlying theory (conventional algorithm-centred model of
computation) were not appropriate for embedded applications, where the stream
processing is required. Guaranteed success of system design from systems-on-
chips and other (pro-)active components assumes the application of interaction-
centred models of computation that would better support the analysis of
(multiple-simultaneous) stream processing.

The development of embedded real-time systems and the corresponding need
for a coordinated design, verification and validation are extremely important for
industry, and indeed for society, which determines the safety criteria for such
applications. There is an evident need for formal analysis in the development of
real-time systems, although computer science still does not provide adequate
tools that support formal analysis of embedded systems (see the examples given
by Tennenhouse in [6]). In many cases when the computing power is insufficient
for a given application, mere moving to more powerful processors will not
improve the situation. Besides, in an industrial environment the use of more
powerful processors is frequently not acceptable for economical or technical (e.g.
excessive heat emission) reasons. In addition, there is a natural tendency that the
user asks for more, and more complex, tasks to be solved once a more powerful
processor is available. The problem will therefore eventually come back.

The need for a coordinated approach in the development of embedded real-
time systems, that is based on considering the entire surrounding infrastructure
(communications, smart devices, computers at distance, etc.), is therefore
evident. Evaluating the state-of-the-art techniques developed over the last ten
years, the limitations imposed by the existing underlying theory and available
tools for designing and analysing the applications at hand become quickly
apparent. This statement is also supported by increasing popularity of interaction-
centred models of computation (that include embedded systems as a special case)
in computer science and software engineering, as demonstrated in [7]. The
expressive and analysing power of those models explain the success of object-
oriented design and programming, and enable timing analysis of interactions,
among many other things. Before such techniques are mature enough to be
introduced to industry, substantial research still needs to be done.

One can also observe increasing use of the so-called intelligent techniques
within different real-time applications. These techniques, grouped under the
common name of artificial intelligence (AI) techniques, allow for the intro-
duction of reasoning approaches that are complementary to hitherto applied
algorithmic approaches. High-end developer tools target the market by allowing
to develop expert systems to be applied in time-critical tasks, using high-level

 6

knowledge, such as operator knowledge, or neural networks based on learning
sets of data [8]. Current state of the art of AI tools allows for specification of
knowledge (rules, cases, input/output data pairs, etc.), but hardly ever touch on
the systems design and actual software engineering processes. Algorithms have
been developed for many important problems in artificial intelligence, such as
search algorithms, automatic and interactive theorem proving systems and others.
In knowledge engineering, a similar state of maturity has not been reached yet.

Still, practical cases of using agent-based reasoning, approximate, any-time
and time-constraint reasoning about knowledge, and the related concepts of
intelligent interaction and ontology of components are the signs of coming
changes. The shift in the character of practical applications has caused the move
of AI researchers from algorithm-centred approaches to the agent-based (i.e.
interaction-centred) ones that are more sophisticated. This is in accordance with
the evolution of software engineering and computer science, from algorithm-
centred programming languages and models of computation to object-oriented
programming languages and interaction-centred models of computation. The new
approach also supports handling of components with incomplete information
about their own properties and about the properties of their interaction partners.
At the same time this evolution leads to new problems, such as the necessity to
use higher-order logic [9,10] and introduction of the time awareness into models
and methods [11]. The emergence of new models of computation has pointed out
the necessity of time modelling and philosophy-related digital problems,
discussed in [12–14], that should not be overlooked.

Knowledge engineering becomes even more complicated when realizing that
knowledge can almost never completely be modelled using only one representation
technique. The simultaneous use of multiple-knowledge representation techniques
deserves attention. Information, needed in automation, comes from different
sources and is available in symbolic or numerical format, each source covering a
part of the current state. For each type of knowledge an appropriate set of
representation techniques, matching its characteristics, should be found.

However, this brings forward an additional problem for systems engineering –
many enabling theories (e.g. AI and control theory) focus on rather small parts of
a system, leaving integration problems of multiple theories with their multiple
and accumulating approximations and multiple views on information representa-
tions to systems and software engineers. Partial support to resolving this situation
comes from the Unified Modelling Language (UML) paradigm, developed as a
design tool in software engineering and increasingly used more widely [14].

Finally, it should be noted that contemporary computer systems rarely func-
tion in isolation; instead they are almost always collaborating with their environ-
ment, interacting with other systems (comprising sensors, actuators, hardware,
software, human operators, natural processes, etc.). During the design process of
a system, at a certain moment the integration of different subsystems needs to be
addressed (component-based design, reuse of software and COTS-based design
are typical examples that lead to the analysis of integration problems) as

 7

discussed in [15,16]. This entails “matching” the characteristics of the system
under development with the characteristics of the collaborating and interacting
systems, making sure that the integral behaviour of cooperating systems will
adhere to the requirements and will meet all the given constraints, etc.

It should be noted that many design and run-time problems in complex systems
actually stem from incomplete match of properties of the interacting partners or are
found at the interfaces between different subsystems or components. Another
example of malicious and difficult to detect subset of integration problems stem
from not quite coherent theories and their approximations as being used in different
interacting components.

There is an evident need for a coordinated, structured design approach that
takes into account the variety of integration issues in a clear and transparent
manner, and that allows for analysing the impact of alternative design choices. One
should also address the rapidly increasing autonomy, intelligence, selfishness, and
proactive behaviour of system components as described, for instance, in [17]; that
may substantially influence system architecture and is an explicit source of
incomplete information in a well-designed system. Incomplete information in a
system will add to emergent behaviour that results form interactions between
autonomous and proactive components of the system during its operation, and
cannot be deduced from the given finite design description of the system.

In a nutshell, the new software-intensive systems can be characterized, based
on the observations discussed above, by the following features:
– increasing number of new products, systems, devices, and their components

(building blocks) are software-intensive, meaning that their functionality is
essentially determined by software;

– as a rule, the software is directly interacting with (i.e. monitoring and
influencing) the environment, this emphasizes the role of stream processing as
opposed to conventional string processing;

– remarkable increase in the complexity of such systems, including intrinsic
complexity, can be observed – for instance, the increasing role of emergent
behaviour that is generated dynamically and can not be deduced from the
static description of the system;

– the interaction of (autonomous, proactive) components has a major role in
determining the systems behaviour, reducing correspondingly the role of
separate algorithms in the overall behavioural pattern of systems;

– there are clear indications that modelling techniques emerging in software
engineering, systems engineering and knowledge engineering focus on
integration of multiple views and techniques;

– the research focus is moving from research of isolated problem solving
algorithms to integration of algorithms into a system so that prefixed system
properties will be achieved as precisely and economically as technically
possible.
The above-mentioned issues that represent the essence of evolution trends

observable in software-intensive systems as built for embedded and time-critical

 8

applications (but also for many proactive, autonomous and pervasive computing
systems) form the basis for identification of perspective research issues, dis-
cussed further in this paper.

2. TASKS FOR A SYSTEM DESIGN ENVIRONMENT

There is a strong need for tools that would provide the designer of industrial

systems with overall theoretical and practical support in system and software
engineering. Bits and pieces of this approach already exist and are applicable at
several stages of system development. However, the overall framework, that
allows for proper support during the multiple stages of the system development
cycle, e.g. specification, analysis, design, implementation, testing, and at the
same time would promote representation and comparative analysis of different
architectures and components, is still missing. Such a framework should be
concerned with large (potentially embedded) computing systems with an
objective to handle all the major aspects of system development – starting from
the initial idea of a system up to the fully described, verified, implemented and
validated system that meets the user requirements, including the quality of
service (QoS) requirements imposed on fault-tolerance, safety, security, etc. This
development framework should satisfy the features of the contemporary
software-intensive systems listed in the previous section of this paper.

Starting questions should focus on how to handle the ever-increasing
complexity, on the analysing methods that enable better understanding of the
reasons that influence system behaviour, and better prediction of the actual
behaviour. This involves several aspects of system representation, taking into
account both functional aspects as well as QoS aspects (such as timing correct-
ness, fault-tolerance, safety, security, etc.). Quite often, QoS requirements can be
satisfied only if one can analyse and control the intensity of the emergent
behaviour.

System description should also include the processing of location-dependent
aspects, concerning the manner in which the physical or logical locations of
components within a complete system are described and how the connections of
the components depend on their locations. In many cases such details may have
an impact on the system behaviour. For instance, consider the impact of a
component failure at a given location (e.g. a wagon of a train) that causes the
occurrence of a symptom elsewhere (e.g. in another wagon), or interactions of
autonomously moving vehicles. This type of information has been shown to be of
vital importance in the success of system development in the project
BRIDGE [18]. Good progress has been achieved already in the analysis of the
logical behaviour of systems, but for the formal analysis of time and location
aspects the progress is not as good.

The system designer faces a constant need for compromises by selection of
tasks to be performed, their implementation either in hardware or in software,

 9

selection of communication media to be used, selection of methods for the
assessment of the progress in system development, etc. The compromises may be
affected by technical or economical limitations or even by subjective preferences
of the endusers of the designed system. It might be that a choice is made for
digital signal processing techniques instead of a hardware component (usually
based on analogue processing), or an ASIC chip is used instead of a piece of
software-implemented production rules in an expert system, etc. This means that
particular architectural (and algorithmic) choices will be finally fixed only during
the system design and testing process. It should be noted here that the design
engineer is frequently left without any supporting tool that would help to fore-
cast, early at the design stage, the realistic impact of the alternative design
choices on the behaviour of the system.

An additional factor, often neglected in academic studies but very important
in practice, concerns the strictly limited development time, assigned for many
industrial projects. Sometimes, over a limited period of time, a high number of
software packages with still evolving contents are delivered to the customer,
frequently on still evolving hardware platforms. This imposes a seriously reduced
time frame for the design, development and validation of the software, as well as
its integration with surrounding systems. Within this framework, under the time
pressure a good supporting design environment has an even greater value. There
is some light at the end of the tunnel – new evolving system development
technologies based on UML, for instance [19,20], are promising.

The industry is aware of the necessity to introduce proper system and software
development approaches. This is underlined by the eagerness to obtain and show
Capability Maturity Model (CMM) levels, and other measures for maturity in
system development processes, requirements traceability, etc. Many companies
that were between levels 1 (initiation) and 2 (defined at project level) have
shifted during the last few years to the levels 2 and 3 (defined at company level).
This is a clear illustration of industry’s adherence to system and software
development processes. Another illustration is the strong support to Object
Management Group (OMG) and wide acceptance of UML, the related software
products (e.g. [14]), and a software process adapted to the new technology,
developed by this consortium for the industrial use.

Software engineering attempts hard to move software production process
closer to the reliability and predictability level, achieved in other engineering
disciplines (e.g. in civil and mechanical engineering). Whereas progress has been
quite smooth in data and information processing software, the embedded soft-
ware and other software-intensive products have suffered difficulties. Ironically,
the major obstacle to the progress has been the incoherence between the theory
(algorithm-centred mainstream of computer science in the last century),
essentially different computing process in new applications (stream-based instead
of string-based computing), and the increasingly component-based practice of
software production. Only in 1990s the new paradigm (interaction-centred
computation) has gained wider acceptance and, at least in principle, coherence

 10

between the solved tasks, goals to be achieved, applied theory, and available
tools have started to develop. Today, the theoretical foundations for the new
paradigm are still developing [9,21] and are not yet sufficiently mature to be
applied in building industrial systems and software engineering tools for
industrial use. The experimental applications however, have been promising – a
discussion of this topic is presented in the second part of this paper.

Unfortunately, over the same time, the problems to be solved and the
architectures to be handled have been getting more complex as well, asking for
well-elaborated approaches. Some of the new problems were characterized
earlier in this section. Somewhat different aspects of new computer applications
are emphasized in [6] by discussing the “movement from human-centred comput-
ing to human-supervised (or even unsupervised) computing”. Techniques and
tools that are being used for system engineering, have an effect not only on the
problem-solving ability of a designer, but also on avoidance and detection of
errors that are made during problem solving. Thus it is clear that these tools and
methods should also cater for human limitations and capabilities. These issues
are referred to as cognitive engineering, which term combines ideas from system
engineering, cognitive psychology, and other human factors related research.

Many of the arising problems originate from the insufficient integration of
software engineering, system engineering and cognitive engineering in the build-
ing process of complex systems. The problems often arise in the interfaces
between the components, where the components may be of hardware, software,
environment, or human origin. These problems are often caused by incompletely
matched ontology of the interacting components. This all leads to the search of
methodologies that would foster coordinated design of the components, inter-
faces and interactions between the components, and that would provide seamless
transitions and mappings between the disciplines involved. Emerging theoretical
and technological trends, such as interaction-centred models of computation,
agent-based reasoning methods, proactive computations and ontology of inter-
actions also support the aforementioned ideas. In addition to theoretical research,
several initiatives on new computing technologies have been launched recently
(for instance, proactive computing [6,22] and autonomic computing [23]).

Looking at software-intensive systems from an overall systems point of view,
every aspect and part of the overall system has to be assessed for correct
functioning and reliability; e.g. the process to be controlled must be understood
with sufficient precision, equipment used to monitor and influence the controlled
process must be correctly interfaced with the environment and with the computer
system and dynamic properties of the software must be matched with those of the
environment and the interfacing equipment. All systems will eventually have
failures, either on system or on component level, related to the technological
limits and the limits of the knowledge about the system. This means that theories,
technologies, and the tools used for system development and pre-implementation
analysis of the system design must support all the aforementioned aspects. New
theories and technologies are emerging but, at the moment, there are no tools of

 11

the required analysis power available for the industry. Majority of the available
tools are still based on models of computation (e.g. Turing machines with slight
extensions [21]) that have insufficient expressive and analysis power for handling
new software-intensive systems.

Note that these observations apply to a broader scale than just to embedded
real-time systems. Software-intensive systems development for operation in a
“non-real-time environment” needs to resolve very similar multidisciplinary
design problems, compromise of the resources to be applied for a given task
(software, hardware or human) and validation and verification in safety-critical
applications. Although system safety engineering techniques have existed for
decades, changes and extensions are required in techniques used for systems that
contain digital computers and software. System design should therefore comprise
topics such as modelling and analysis of safety, system and software require-
ments specification, safe software design, software fault tolerance, and verifica-
tion and validation of safety. Safety topics should be seamlessly integrated into
the research of system architecture. In addition to long-known safety problems,
contemporary systems often fail in security issues. The security issues have
become as important as safety issues and need remarkably more attention in
system design.

This section focused on the designer’s expectations with respect to integrated
systems design environment. The majority of software-intensive systems comprise
highly multidisciplinary knowledge and corresponding theories. The designers of
such systems often face unexpected behaviour of the system due to cumulative
approximation errors invoked by integrated use of many approximately imple-
mented theories and methods, e.g. loss of stability in a control algorithm due to
excessive jitter of time unit (as used by a discrete time theory based algorithm).
Commercially available design environments are pretty helpless in analysing such
phenomena. Designers have a serious need to get automated support in comparing
the effects of alternative design decisions and compromises on the system
behaviour. Finally, computing-related part of the system design support suffers
from an obvious mismatch between the available theory of computing and the
essence of the problem to be solved.

3. NEED FOR NEW MODELS OF COMPUTATION

Looking at the essence of modern computer control systems, communication

systems, contemporary multi-media applications, distributed (artificial intelligence)
systems and others, one cannot overlook the influence of time constraints imposed
upon their behaviour. There are two major causes for the introduction of time
constraints [24]:
– necessity to match the behaviour of a computer system with that of its

independently functioning interaction partners in the environment, whose
behaviour is to be influenced by the computer system;

 12

– to represent the incompletely known, or too sophisticated, causal relations
approximately; for instance, those that determine invocation of the system
components, and synchronization of various interacting activities between the
partners.
As a consequence, the designer has to deal with the construction of a time-

constraint concurrent software system that may have safety- and time-critical and
fault-tolerant features that need verification. As a precondition to verification of
time-constraint software one needs time-sensitive models of computation. It has
been explained earlier in this paper that time-sensitive models of computation
should, at the same time, be preferably also interaction-centred and not
algorithm-centred, as they conventionally are.

It should be noted that conventional theories of computer science and tools in
software engineering are not able to address the full suite of timing issues, as the
role of time has been reduced to minimum in those theories and tools since the
canonization of the algorithm theory as the basis for computer science in the
1960s [25]. Therefore the timing issues in software-intensive systems and in
common software have been addressed, in the majority of cases, only partially – up
to the point that is possible in the conventional algorithm theory. This means that
performance and scheduling issues have been addressed, whereas timing of interac-
tions and validity intervals for events and data have been usually neglected.

Rapidly increasing complexity of software-intensive systems, growing
popularity of building systems from (autonomously and proactively functioning)
components, wide acceptance of the object-oriented design methodology [14]
together with the increasing role of safety, security, and time-awareness issues
and improved theoretical understanding of the essence of computing, has given
rise to studies in interaction-centred models of computing and in the correspond-
ing system design paradigm. In fact, the first attempt to emphasize the role of
interactions in computation can be dated back to the end of 1930s, e.g. Turing’s
choice machine [26]. The second attempt started by end of the 1970s; a summary
of five-year developments in interaction-centred models of computation is
published in [27] and the first time-sensitive, empirical, interaction-centred model
is published in [28].

3.1. Interaction-centred models of computation

Component-based architectures, object-oriented design and implementation

methods, increasing autonomy and pro-activeness of components are the basic
sources of difficulties hindering the application of algorithm-centred models of
computation for the analysis of system properties. Actually, the difficulties are
caused by an attempt to apply prescriptive specification in the case where only
behavioural specification is applicable. The above-listed methods and technol-
ogies enable explicit handling of incompletely known causal relations. The
designer of such systems cannot avoid the presence of the incompletely known
inner structure and pro-activity invoked properties of components, externally

 13

invoked methods in objects and dependence of the components behaviour on the
history of computations. Quite often components exhibit indefinitely ongoing
behaviour, not necessarily strictly coordinated with that of the other components
they interact with. In many cases, ongoing behaviour can be considered as a
cyclic or sporadic repetition for indefinitely many times of a finite set of
algorithmically described activities. Interactions between the components with
ongoing behaviour lead in many practical cases to the necessity of time-selective
interactions as demonstrated in [10].

The connections between the components in a system are usually static;
however, the connections do not describe unambiguously the behaviour of
systems. The system behaviour depends, to a large extent, on the actual semantic
contents of messages exchanged during a particular interaction act performed
between connected components during the operation of the system. Such systems
exhibit the so-called emergent behaviour, i.e. a behaviour that cannot be deduced
from the description of the static structure of the system. There can often be a
countable number of emergent behaviours; therefore verification of behavioural
properties of such systems needs innovative approach as compared to methods
applied for conventional programs, whose behaviours can be deduced from the
prescribed static structure of the program.

Several authors have suggested that serious extensions to the existing models
of computation are necessary so as to address explicitly interactions, emergent
behaviour and more subtle timing constraints (imposed upon the interactions).
These extended models should exceed conventional algorithm-centred models
both in formal description power and analysis power. As a rule, those models
describe indefinitely ongoing computations on interaction machines as defined
in [9] instead of using the conventional Turing machine. Interaction machine can
be either sequential or multistream interaction machine. Two Turing machines
that jointly process a data stream can model a simple sequential interaction
machine (called the persistent Turing machine), if those Turing machines, while
processing the stream, are communicating via an independently operating
proactive device (e.g. an active filter) with memory. This means that the input of
the second Turing machine may depend on the pre-history of computations on
the first Turing machine. The notion “Universal Turing Machine”, introduced by
Chaitin in [12], is intuitively close to the multistream interaction machine notion
as introduced in [9].

Interactive computing can be viewed as agent-based processing of streams, as
opposed to the algorithmic computing where an input string (i.e. an element of
the input stream) is processed. The output string (an element of the output
stream) is generated and then the algorithm terminates with no memories of the
past. The input/output stream processing emphasizes the persistent nature of
computing. Characteristic to interactive computing is the phenomenon of
emergent behaviour. The following features are typically present in interaction-
centred computations and are absent from algorithm-centred computations:
– (multiple) stream input-output for a computing agent;

 14

– interleaving of inputs and outputs during computations is natural;
– history-dependent behaviour of the computing agents.

Processes that exhibit above-listed properties are hard to describe and even
harder to analyse in algorithm-centred models (for instance, learning and adapta-
tion in a system) and can naturally be presented in interaction-centred models.

Academic research of interaction-centred models of computation has been
quite intensive. For instance, Milner developed a π-calculus [29,30] that extends
his interaction-centred model [27] to mobile, autonomous computing agents.
Wegner [31] clarified the philosophical background of interaction-centred com-
puting. Goldin and colleagues [32] demonstrated that the modelling power of
UML descriptions corresponds to that of interaction machines. The essence and
practical presentation aspects of interaction machines has been clarified by many
authors [9,33–36]; however, the area of interaction machines is still open to
research.

So far the research in this area has been mostly focused on theoretical-
philosophical aspects of interaction-centred computing and has not yet led to
tools that perform formal analysis on systems described in terms of interaction
machines. Necessity to accelerate progress in formal analysis is soon moving to
the focus of system and software engineering. This is partially caused by OMG
that launched a large-scale project, focused on developing a new methodology
(see http://www.omg.org/mda/) for designing software-intensive systems that
assumes the availability of formal verification at the specification and design
stages. In addition, most of the computer applications in industry need remark-
ably wider support from formal analysis – the complexity of those applications
demands combining of testing with formal methods to reach the required level
of QoS.

A conventional computing system is based on algorithms and completely
known causal relations between algorithms. Those causal relations determine
admissible permutations in interleaving input and output streams (i.e. admissible
concurrency of computations). When some causal relations are not completely
known, the designer cannot precisely know which of the occurring permutations
are admissible. This difficulty is directly related to permutations, potentially
occurring when a system performs forced concurrency. The forced concurrency
is a normal operation mode of multi-stream interaction machines, when physical
processes in the environment (and not the designer, or available number of
processors) determine the number of concurrent computing processes, called
forced concurrency in [10] and true concurrency in [9].

To verify, in the general case, the forced concurrent mode of processing in
software-intensive systems, one needs a separate time-counting system for each
stream – this causes introduction of the sophisticated time model [13] to the
system description. Similarly, the corresponding interaction-centred model of
computation has to be time aware. For instance, time-selective exchange of
information between concurrently processed streams, as a side effect of forced
concurrency leads to checking the validity time of transmitted information. Time-

 15

correctness of the behaviour of such systems cannot be demonstrated by testing
only. One also needs formal verification enabled by a time-aware, interaction-
centred model of computation [10].

4. CONCLUSIONS

Rapidly increasing number of systems and commodity products essentially

depends on computers and software (so-called software-intensive systems). This
means that the functionality of those systems and products is actually determined
by software. Part 1 of the paper surveyed the basic characteristics of such
systems, deduced the basic new requirements to the system architecture and
software, and assessed the available theory, technology and methods for building
such systems. Based on those characteristics, requirements, and assessment the
paper sketched main evolution trends in the underlying theory of computation
and technologies used in systems and software engineering.

In a nutshell, theory of computation moves from the algorithm-centred
paradigm to the interaction-centred paradigm, systems and software engineering
is focusing on problems related to increased use of proactive building blocks.
The mentioned trends are strongly influenced by interdisciplinary efforts to
create proactive (software) components, enable their collaboration in a system,
and guarantee that the system satisfies the expectations of its users. Part 2 of this
paper focuses on a survey and discussions on those interdisciplinary efforts in
developing and testing new theories and technologies to support the designers of
such systems.

REFERENCES

 1. Holt, J. D. Current practice in software engineering, a survey. Comput. Control Eng. J., 1997, 8,
167–172.

 2. Cervin, A., Henriksson, D., Lincoln, B., Eker, J. and Årzén, K.-E. How does control timing
affect performance? IEEE Control Syst. Mag., 2003, 23, 16–30.

 3. Jennings, N. R. and Bussmann, S. Agent-based control systems. IEEE Control Syst. Mag.,
2003, 23, 61–73.

 4. Sanz, R. and Zalewski, J. Pattern-based control systems engineering. IEEE Control Syst. Mag.,
2003, 23, 43–60.

 5. Selic, B. and Motus, L. Using models in real-time software design. IEEE Control Syst. Mag.,
2003, 23, 31–42.

 6. Tennenhouse, D. Proactive computing. Commun. ACM, 2000, 43, 43–50.
 7. Meriste, M. and Motus, L. On models for time-sensitive interactive computing. Lecture Notes

in Comput. Sci., 2002, 2329, 156–165.
 8. Vingerhoeds, R. A. Génie d’automatisation et systèmes intélligents temps réels, Proposition

d’une méthodologie de conception. Dossier d’habilitation a diriger des rechèrches, Institut
National Polytechnique Toulouse, 2002.

 9. Wegner, P. Interactive foundations of computing. Theor. Comput. Sci., 1998, 192, 315–351.
10. Motus, L. and Rodd, M. G. Timing Analysis of Real-time Software. Pergamon/Elsevier, 1994.

 16

11. Motus, L. and Meriste, M. Towards self-organising time-sensitive control system’s software. In
Proc. IFAC Conference on New Technologies in Computer Control. Hong Kong, 2001,
236–241.

12. Chaitin, G. J. Meta-mathematics and the foundations of mathematics. Bull. Eur. Assoc. Theor.
Comput. Sci., 2002, 77, 167–179.

13. Motus, L. Modeling metric time. In UML for Real: Design of Embedded Real-time Systems
(Selic, B., Lavagno, L. and Martin, G., eds.). Kluwer, Norwell, 2003, 205–220.

14. Object Management Group. UML Profile for Schedulability, Performance, and Time:
Specification. OMG document ptc/2002-03-02, Needham, 2002.

15. Kobryn, C. Modeling components and frameworks with UML. Comm. ACM, 2000, 43, 31–38.
16. Sparling, M. Lessons learned through six years of component-based development. Comm.

ACM, 2000, 43, 47–53.
17. Ferber, J. Multi-Agent Systems. Addison-Wesley, Harlow, 1999.
18. Coen, L. De, Netten, B. D. and Vingerhoeds, R. A. Central advice system for fleet management

and operations; improving the safety and reliability for rolling stock. In Second World
Congress “Safety of Transportation; Imbalance Between Growth and Safety?”. Delft,
1998, 1–10.

19. Selic, B., Lavagno, L. and Martin, G. (eds.). UML for Real: Design of Embedded Real-time
Systems. Kluwer, Norwell, 2003.

20. Mellor, S. J., Kendall, S., Uhl, A. and Weise, D. MDA Distilled. Addison-Wesley, Boston,
2004.

21. Blass, A. and Gurevich, Y. Algorithms: a quest for absolute definitions. Bull. Eur. Assoc.
Theor. Comput. Sci., 2003, 81, 1–30.

22. Hamilton, S. Intel research expands Moore’s law. IEEE Computer, 2003, 36, 31–40.
23. Kephart, J. O. and Chess, D. M. The vision of autonomic computing. IEEE Computer, 2003,

36, 41–50.
24. Motus, L. and Meriste, M. Time modelling for requirements and specification analysis. In Real-

time Programming 2003 (Colnaric, M., Adamski, M. and Wegrzyn, M., eds.). Elsevier
Science, Oxford, 2003, 9–14.

25. Lee, E. A. What is ahead for embedded software? IEEE Computer, 2000, 33, 18–26.
26. Turing, A. On computable numbers with an application to the Entscheidungsproblem. Proc.

London Math. Soc., 1936, 2, 230–265. Corrections: 1937, 3, 544–546.
27. Milner, R. A. A calculus of communicating systems. Lecture Notes in Comput. Sci., 1980, 92.
28. Quirk, W. and Gilbert, R. The Formal Specification of the Requirements of Complex Real-time

Systems. AERE, Harwell, Rep. No. 8602, 1977.
29. Milner, R. Communicating and Mobile Systems: The PI-calculus. Cambridge Univ. Pr., 1999.
30. Milner, R. A. Elements of interaction. Turing Award lecture. Comm. ACM, 1993, 36, 78–89.
31. Wegner, P. Why interaction is more powerful than algorithms. Comm. ACM, 1997, 40, 80–91.
32. Goldin, D., Keil, D. and Wegner, P. An interactive viewpoint on the role of UML. In Unified

Modeling Language: Systems Analysis, Design, and Development Issues (Siau, K. and
Halpin, T., eds.). Idea Group Publ., Hershey, PA, 2001, 250–264.

33. Meriste, M. and Penjam, J. Attributed models of computing. Proc. Estonian Acad. Sci. Eng.,
1995, 1, 139–157.

34. Gurevich, Y. Evolving algebras. In Proc. 13th IFIP Congress. Hamburg, 1994, vol. 1, 423–424.
35. Gurevich, Y. and Spielmann, M. Recursive abstract state machines. J. Universal Comput. Sci.,

1997, 3, 233–246.
36. Motus, L. Timing problems and their handling at system integration. In Artificial Intelligence in

Industrial Decision Making, Control and Automation (Tsafestas, S. G. and Verbrug-
gen, H. B., eds.). Kluwer, 1995, 67–88.

 17

Sardsüsteemide arendustehnoloogia kitsaskohad.
1. osa: Hetkeseis ja üldtrendid

Leo Mõtus, Robertus A. Vingerhoeds ja Merik Meriste

Selles kaheosalises artiklis on analüüsitud ajakriitiliste tarkvaramahukate

süsteemide võtmeprobleeme, mis paiknevad kasutatava süsteemitehnika ja tark-
varatehnika ülekattealal. Taoliste süsteemide rakenduste näideteks on arvuti poolt
juhitavad liikuvad seadmed, tehnoloogiliste protsesside juhtimissüsteemid,
meditsiiniaparatuur, robotid, koduelektroonika, mobiiltelefonid, looduskesk-
konnaseire jms. Artikli esimeses osas on esile toodud teoreetilised ja tehnoloo-
gilised kitsaskohad. Käsitlus baseerub eksisteerivate süsteemide analüüsil, milles
eriline tähelepanu on suunatud spetsifitseerimis- ja projekteerimisetappidele. Uus
raskelt analüüsitav omadus, mis iseloomustab tarkvaramahukaid süsteeme, on
ilmnev käitumine, mis ei ole ennustatav süsteemi staatilisest kirjeldusest, vaid
tekib dünaamiliselt süsteemi töö käigus.

