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Abstract. This part of the paper discusses evolution trends of the theory and technology in time-
aware interaction-centred models of computation and in time-aware multiagent systems that foster 
the emergence of a multidisciplinary environment, capable to support analysis of design decisions 
at the early development stages of time-critical software-intensive systems. 
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1. THEORETICAL  AND  TECHNOLOGICAL  NEEDS  OF  
SOFTWARE-INTENSIVE  SYSTEMS 

 
Software-intensive systems form the major part of contemporary computer 

applications. This class contains embedded and real-time systems, proactive 
systems, a remarkable part of interactive problem solvers and decision-support 
systems, etc. All such systems have pretty similar theoretical and technological 
needs and expectations that differ from those characterizing data processing and 
conventional information processing systems. In the first part of this paper [1] 
several application areas of software-intensive systems were surveyed, with the 
focus on new requirements to the theory and technology arising from those 
applications. 

Based on this survey one can distinguish three sources of system designer’s 
worries: 
–  increased complexity of systems with all its implications; 
–  incoherence of the applied theory of computation and the actual computation 

needed in those systems; 
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–  cumulative approximation effects of a variety of theories and algorithms 
integrated into systems. 
Some emerging methods that may reduce the worrying influence of the 

above-listed factors were also pointed out in [1]. 
Rapidly increasing complexity of systems can remarkably better be controlled if 

systems were built from autonomous and proactive components. Eventually this 
will lead the today wide-spread component-based systems to multi-agent systems. 
Another emerging method for coping with the complexity is to introduce time-
awareness to the systems and to their components. This enables to substitute many 
complicated causal relations with appropriate time constraints that have 
approximately similar impact on system behaviour [2,3]. It is interesting to note that 
both of these methods have been thoroughly tested in the history of human society. 
Another reason for introducing time-awareness to systems, in addition to direct 
reduction of the complexity, is the potential need for time-selective communication 
in a system that contains autonomous and proactive components. Especially in the 
cases where a computer-based component has to communicate with a non-
computer component of the system from the natural or artificial environment. 

Incoherence between the available and required theory of computation has 
been detected since systems started to perform more demanding tasks, e.g. in 
safety- and time-critical applications, besides becoming more and more complex. 
The conventional belief of a computer scientist that holds in conventional applica-
tions – correct prescriptive description fully determines the system behaviour – 
does not hold in the majority of software-intensive applications. Many researchers 
have been working intensively to cope with the emerging behaviour that is 
generated dynamically during the operation of new systems [2,4–7]. In spite of many 
interesting theoretical results, the commercially available tools for system develop-
ment are still not quite coherent with the required theoretical basis. It means that on 
the average the theory for new models of computation is not mature and is at the 
moment lagging behind the system building practice. For instance, think about the 
long history of practical time-constraint stream processing and the not too 
advanced status of the corresponding theory, or about many empirical (theoreti-
cally not thoroughly studied) issues in the foundations of the UML. 

Theoretically and practically the least advanced domain is related to systematic 
study of phenomena occurring at systems integration from components, e.g. impact 
of the cumulative effects of approximations in various components on the systems 
behaviour, and joint effects of multiple collaborating theories. For instance, the 
conventional theory for proving stability of a control algorithm is only of limited 
use when the algorithm is implemented on a multiprogrammed computer, because 
the time unit as implemented in a computer is of random length and therefore is 
inconsistent with the assumptions of the conventional stability theory. Another 
sample problem from this domain is related to the effects of small incoherence in 
the ontology of interacting components of a system. Ontology is usually considered 
as a static notion. In order to make any two components to collaborate, they should 
have a common ontology. If not, then at least one of the components should be able 
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to modify its ontology in order to understand its partner. In proactive component-
based software-intensive systems one actually needs the notion of interactive 
ontology that is not sufficiently studied yet. Interactive ontology is related to 
capabilities for adapting to, or learning from perceived experience. 

From the practitioner’s point of view it would be ideal to have a unified 
system development framework that caters for the above listed worries, and 
integrates tools for handling all the different involved theories and available 
practical knowledge into an easily usable design environment. Putting together 
the evolution trends that exist today – e.g. those supported by the Object 
Management Group (OMG) consortium (http://www.omg.org), Foundation for 
Intelligent Physical Agents (FIPA, http://www.fipa.org), and many individual 
researchers – the outlines of such an ideal framework become predictable. The 
development of systems starts from preliminary system engineering study that 
continues with elaboration of the preliminary concepts in a model space. Today a 
realistic alternative is to apply MDA-based technologies [8] as UML and its 
profiles (e.g. real-time UML and Agent UML), or to use the concept of UML 
model processors (that semi-automatically enables to apply different theories for 
formal analysis of different aspects of the design [9]). Run-time monitoring and 
diagnosis-related functions are to be added to the future system during its design 
stage, in addition to periodic formal analysis of the design by using model 
processors. Run-time monitoring and diagnosis has an important role in keeping 
the emergent behaviour within the acceptable limits. The completed design is 
then transformed into code by code generators (or in more sophisticated cases by 
agent composers, synthesizers, etc.), verified and tested. 

The rest of this paper focuses on surveying the evolution of new models of 
computation (that form the basis for the elaboration of methods potentially used 
in new UML model processors), development and application of cognitive 
engineering methods and elaboration of methods for building and analysing time-
aware multi-agent systems. 

 
 

2. TIME-AWARE  INTERACTION-CENTRED  MODELS   
OF  COMPUTATION 

 
A short introduction to the research of interaction-centred models of computa-

tion was given in the first part of this paper. This part focuses on the survey of 
the evolution of time-aware concepts in modelling interaction-centred computa-
tion. In other words, this is a survey of attempts to re-introduce the explicit 
notion of time into computer science with the final goal of getting better support 
to behavioural analysis of embedded real-time systems, time-aware multi-agent 
applications and the rest of software-intensive systems. Pragmatically, the 
designers are looking for models that possess the capabilities: 
–  to handle multiple data-streams simultaneously (act as a multi-stream inter-

action machine [4]); 
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–  to capture time constraints imposed not only upon performance, activation 
and process execution deadlines, but also upon inter-process interactions and 
validity intervals of data and events; 

–  to reason about the coherence of the imposed time constraints and to verify 
that the system requirements, specification, design, and implementation 
satisfy the imposed time constraints. 
Characteristic to the time-critical software-intensive systems is that they have to 

match phenomena that occur in different environments – in a computer, engine, 
chemical processes, mechatronic device, etc. Different time-counting systems may 
be used in each of those environments, whereas the computer has to be aware of all 
those time-counting systems. Introduction of proactive components increases 
pressure for multiple, simultaneous time-counting systems and time concepts [10,11]. 
This is the reason why time model to be used in software-intensive systems must 
be more sophisticated than the one used in conventional computer science. 

Metric time quietly started to infiltrate into computing systems about three 
decades ago. Consider, for instance, timed Petri nets [12], a variety of temporal 
logics [13,14], and timed process algebras [15] that were introduced and mostly also 
successfully applied. For different reasons, any of the listed methods did not hold 
one or more of the above listed capabilities. For instance, Petri nets are not able 
to describe multi-stream processing since Petri nets have been proved to be 
equivalent to Turing machines. Besides, the used time model in timed Petri nets 
was too simplified to capture all the required time constraints. Temporal logics 
have two typical (and somewhat related) limitations: 
–  most of the introduced temporal logics have the expressive power that is 

equivalent or below that of the first-order predicate logic and therefore cannot, 
in principle, handle multi-stream processing that needs higher-order predicate 
logic [2,16,17]; 

–  they cannot capture all the required time constraints (e.g. those imposed on 
inter-process interactions and on validity intervals of data and events) due to 
oversimplified time model used. 
The application domain of timed-process algebras was limited mainly because 

of the oversimplified time model, and in some cases because of the applied dense 
(continuous) time presentation [15]. The use of continuous time is the dream of 
modellers who just describe systems, but could be a nightmare for synthesizers of 
new systems because of major approximations required when implementing the 
designs on digital computers, and also because of many potential paradoxes 
related to causal reasoning and detecting the quantitative order events. 

Almost simultaneously with Milner’s interaction-centred model of computa-
tion CCS [18], completely independently and with different purpose and different 
arguments Quirk and Gilbert published the first time-aware interaction-centred 
model of computation [5]. This model did not result from smooth evolution of 
conventional scheduling theory, temporal logic, timed process algebra related 
research, timed Petri nets, or any other timed theory of computation. It just stated 
that each component in a system has a right for its own time-counting system, 
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and this possibility should be considered when designing inter-component 
communication. The major innovative ideas introduced by Quirk and Gilbert were: 
–  a remarkably more sophisticated time model that enables each computing 

process to have its own time-counting system (and supports a multitude of 
time concepts, see for philosophical background [10]); 

–  explicit description of a non-terminating program with a set of repeatedly 
activated terminating programs and with explicit identification of the activa-
tion instants and time constraints; so far, conventional computer science 
considered non-terminating programs as not verifiable (there is no point in 
verifying properties of a non-terminating algorithm). 
Pragmatically speaking, Quirk and Gilbert in [5] pointed to the stream-proces-

sing essence of a non-terminating program and also pointed to the necessity and to 
a method of verifying non-terminating programs. The inner structure of a non-
terminating program can be represented by a set of interacting and countable 
number of times re-activated terminating programs [5,19], or by a set of persistent 
Turing machines [16], or by a multistream interaction machine [4]. Unlike persistent 
Turing machine and multistream interaction machine (as defined by Wegner) and 
interactive ASM [6,20] that are not aware of time, the alternative suggested in [5,19] 
has explicit time awareness. Obviously the search for time-aware interaction-
centred model of computation should depart from the ideas of Quirk and 
Gilbert [5]. 

One of the key issues when ensuring time awareness of systems and their 
models is the selection of concepts for time models introduced to software-
intensive systems. Time models as used in real-time systems were discussed in 
1993 in [21] and did not attract wide attention. The major breakthrough in using 
sophisticated time models for building software systems was invoked by OMG 
decisions to fix a time model for RT CORBA and UML profile for scheduling, 
performance and time [9,22]. Similarities between OMG-adopted time models and 
those published in 1993 are discussed in [11]. 

Recent progress in the practice of time-aware interaction-centred models of 
computation is related to UML. It was demonstrated in [23] that UML model 
presents multi-stream interaction-centred computations. Before elaboration of 
UML profile for scheduling, performance and time, together with the concept of 
UML model processors [9], experiments were made to introduce time to pre-
UML object-oriented models [24] and to test an approach that later became 
known as UML model processors. 

 
 
3. EXAMPLES  OF  PRACTICAL  APPLICATION  OF  NEW  MODELS  

OF  COMPUTATION 
 
As discussed in [25], several ideas of time-aware interaction-centred models of 

computation have been put in place and experimentally tested in the project 
LIMITS. This project developed and evaluated the basic ideas of a new 
generation of real-time software engineering tools. LIMITS was based on a 
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highly innovative methodology (the Q-methodology [2]), whose capacity to 
model the real-time behaviour of software is mathematically proved – its 
description and analysis power is equivalent to a weak second-order predicate 
calculus [17]. As claimed independently in [16], the necessity for higher-order 
predicate calculus and the use of forced (true) concurrency is characteristic to 
interaction-centred models of computation. Sophisticated time model used as an 
essential part of the formalism makes it possible to handle, in principle, all the 
temporal aspects of industrial applications of information technologies, including 
timing analysis of interactions [26]. 

In order to avoid the common curse of formal methods – too high require-
ments on the mathematical knowledge of their users and bad scalability – the  
Q-methodology focuses on universal properties whose existence conditions can 
be proved beforehand. The LIMITS hides most of the formal aspects of the 
methodology from the system designer and in many cases the timing analysis is 
reduced to simple checking the suitability of system parameters or their combina-
tions. Such an approach enables one to decompose the verification of the 
properties of a system into verification in the large (interactions of components, 
overall behaviour of the system) and verification in the small (specific properties 
of components that enable matching the ontology of components and systems). 
Verification in the large can be started at very early stages of system develop-
ment, immediately after the user requirements and the preliminary system 
architecture have been fixed – even before the algorithms are finally selected. 
Such an early start of formal analysis improves economic feasibility of a project. 
As an additional value, LIMITS generates an executable prototype of the system 
that is based on the formally checked preliminary architecture and user require-
ments. The animation of this prototype improves the end-user’s understanding of 
the operational properties of the future system and facilitates the end-user’s 
participation in the software process. 

Considering the rather narrowly dedicated character of LIMITS (timing 
correctness of interactions is its main goal), it should be used in combination with 
more generally oriented development tools. Therefore LIMITS was seamlessly 
integrated with, at that time upcoming, Object Modelling Technique [24]. Later 
on LIMITS was used in close cooperation with two different UML tools. This 
probably was the first experiment of semi-automatic navigating from an object-
oriented design environment to a formal analysis environment, and returning 
with inserted corrections and modifications to the object-oriented environment to 
continue the development. Similar idea has been applied later [9] in the specifica-
tion of UML model processors to navigate out of the UML environment for 
schedulability and performance analysis and to return with the modified model to 
the UML environment. 

Tools like LIMITS become absolutely necessary for developing applications 
where temporal coherence of imposed time constraints and behavioural charac-
teristics of the components is as important as the logical exactitude of the 
treatment of functional tasks. In other words, LIMITS-like tools can remarkably 
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reduce development cost and related risks of potential accidents (by setting 
implicit limits on the emergent behaviour) when developing safety- and time-
critical applications. Some aspects of such an application are discussed in [27], 
where the analysis engine of LIMITS is used for run-time monitoring subsystem 
in an industrial diagnosis tool BRIDGE. 

Behavioural and timing analysis of interactions in LIMITS takes place in 
three steps that can be iterated depending on the interim results of the analysis: 
1)  analysis of individual building elements of the system (processes and 

channels); all the values characterizing those elements (e.g. activation 
instants, execution duration, intervals for interactions, validity intervals for 
variable values, etc.) are given as interval estimates; 

2)  analysis of interacting pairs of processes (separate theorems have been proved 
for each type of channels that connect two processes); three basic types of 
interactions are separately analysed: synchronous, semi-synchronous and 
asynchronous; 

3)  analysis of the group behaviour of interacting processes or that of the whole 
system; analytical min-max performance estimates can be computed, potential 
static deadlocks caused by time-selective inter-process communication and by 
requirements to validity intervals of interchanged data are detected and 
achievability of required synchronization precision in clusters is checked. 
The UML is de facto rapidly growing towards an international standard and is 

already standardized within the OMG consortium. However, a designer of 
software-intensive systems, working for industry, would need several improve-
ments in UML-related methodologies and tools before they meet designer’s 
pragmatic requirements. For instance, better support to considering location-
related properties and to acquiring and storing information about temporal 
characteristics that are required for timing analysis of interactions is needed. The 
general-purpose UML approach and Agent UML profile, similarly to its profile 
on schedulability, performance and time, should be seamlessly integrated with 
formal analysing methodologies (e.g. by applying UML model processors). 

The conclusion is that today real-time UML and MDA offer enough flexibility 
and mechanisms to successfully move towards application of interaction-based 
models of computation in industrial systems. A step is now needed to be made at 
automation, control theory, systems science and computer science level to take 
these ideas on board. 
 

 
4. NEED  FOR  COGNITIVE  ENGINEERING 

 
The evolution of conventional system engineering, i.e. methodology and tools 

for building artificial systems from passive components, is more or less on track 
in spite of comparatively late acceptance of the time-sensitivity concept. At the 
same time the effect of proactive components on systems behaviour has not yet 
been seriously studied by the mainstream system engineering. A pretty strong 
research community that builds applications based on agents and multi-agent 
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systems exists. However, they tend to study systems, built entirely and only from 
proactive components (e.g. distributed artificial intelligence systems) and focus 
essentially on issues of artificial intelligence. 

It is true that distributed AI and multi-agent systems provide good arguments 
for the interaction-centred model of computing. Still, majority of industrial 
applications of software-intensive systems tend to comprise passive, active, 
reactive and proactive components. Active and proactive components can be 
found in a computer system as well as in its natural and artificial environment 
including human operators and supervisors. Such a non-homogeneous component 
base of a system poses many new problems in its behaviour analysis that, so far, 
have been studied neither in multi-agent systems nor in common software-
intensive technical applications. At the moment the integral effect of those 
problems is approximately covered by the term “emergent behaviour”. 

Emergent behaviour is caused, in addition to incomplete knowledge about 
causal relations, by adaptation, learning and self-structuring capabilities of the 
components. The latter capabilities are based on the perceptive behaviour of the 
system (or its components) that leads to self-assessment capability (or to using 
automatic assessment by a special monitor) of its behaviour with respect to its 
goal function. First awkward steps have been made to study and describe 
formally the time awareness of the perceptive behaviour [28] in the context of 
proactive system design. Run-time assessment of system behaviour is used as a 
special case and is still considered too expensive for routine use. Adaptation and 
learning have been studied mostly as stand-alone phenomena, separately from 
problems of collecting the required information and also separately from 
questions related to interactive ontology. Adaptation and learning are commonly 
used off-line since run-time adaptation may insert too intensive emergent 
behaviour and thus create too high safety risks. 

Looking at today’s situation, there is a clear trend to move from human-
centred systems to human-supervised systems [29]. This has become possible by 
introducing proactive components into artificial systems and by increasing the 
autonomy of the component by decision-making in artificial systems. In order to 
successfully build and operate these next generation systems one has to consider 
three aspects of the systems. First, one has to continue improving smartness and 
proactivity of artificial systems as discussed in the previous sections. Two other 
aspects are more human-related – to improve the design methodologies and 
human interfaces for system operators by paying more attention to human 
limitations and capabilities. The natural (although often implicit) goal, when 
designing artificial systems, is that the designed system should augment the 
capability of a human being, improving its capability to stay in command of the 
situation whenever so desired. 

Therefore the future evolution of system and software engineering and their 
relation to system and software architecture should cater for introduction of those 
“human” aspects to existing approaches and technologies. The human aspects are 
well represented and studied in the context of social sciences, e.g. in cognitive 
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psychology. Some engineering aspects of social sciences have been studied in 
connection with artificial intelligence, artificial life, cybernetics and other disciplines. 
A new discipline has emerged, called cognitive engineering. The majority of 
cognitive engineering research has been focused on human-machine collabora-
tion [30,31]. Leveson [32] claims that the key to successful building of complex systems 
is improved integration of system engineering, software engineering and cognitive 
engineering (including research in interactive ontology). 

Tennenhouse [29] suggests that proactive computing has been invoked by the 
same reasons that led to the emergence of cognitive engineering. Indeed, behaviour 
of artificial proactive components often resembles closely some behavioural aspects 
of biological creatures/entities, e.g. co-constructing autonomous agents [33]. The 
increasing number of proactive components in artificial systems and increasing 
autonomy of components (e.g. freedom for making their own decisions based on the 
information acquired from their environment) leads to a new application domain of 
cognitive engineering in artificial systems. Many concepts and notions used 
traditionally for analysing and describing human behaviour can be applied to 
studying individual and groupwise behaviour of artificial proactive components (e.g. 
agents). The conventional problems of matching characteristic features and similarity 
of goals that are important for efficient collaboration in human communities can also 
be found in artificial world of self-organizing proactive components. 

Notions like negotiations, matching ontology, competition and cooperation, 
earlier applied for studying communities of biological creatures, are now well 
established in the community of designers of artificial (multiagent) systems. A 
new, not yet thoroughly studied problem is the evolution of the ontology of the 
components during the negotiation (or perception) process. Usually ontology is 
studied (e.g. in philosophy and linguistics) as a static property. In artificial 
systems, a proactive component should preferably have interactive ontology. 
That is, a component should be able to modify its ontology dynamically, if 
necessary – as a new aspect of automatic adaptation and learning. Those are 
some of the issues that are to be studied for improving smartness and proactivity 
of artificial systems during their operation. 

As an example, consider the application of cognitive engineering methods 
applied in the project BRIDGE (ESPRIT 22154). The aim was to create a design 
environment for diagnosis systems for large-scale complex systems [25]. The 
theoretical foundation of the project was built around a case-based reasoning 
system, modified to meet the requirements of the time-critical environment. 
Specific requirements of the application were, for instance, deterministic time 
required for reasoning. Most of the variable values in the system had validity time 
intervals, in some cases additional tests had to be made (within fixed time 
intervals) on the diagnosed object. Whenever a substantial change in the case base 
occurred, the time-deterministic reasoning system had to be readjusted. 

Some common types of knowledge and actions that were automatically 
checked in the BRIDGE are illustrated in Table 1. It is clear that different 
techniques are to be applied to different types of knowledge and actions. 
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Table 1. Different knowledge needs different processing methods 
 

No. Knowledge or actions Checks and analysis performed 

1 Knowledge base of the application Functional integrity of the base, integrity of data and 
relations, time coherence of variable values, imposed 
constraints and restrictions 

2 Case base used for diagnosis Coverage of the activation conditions of different 
parts of the application, coverage of the expected 
outcome in abnormal conditions, assessing maximum 
reasoning time after each extension of the case base 

3 Correctness and quality of diagnosis Influence of activation conditions on reachability of 
necessary diagnosis for this condition, influence of 
uncertainty in activation conditions on the correctness 
of the diagnosis, time integrity of conditions and the 
diagnosis 

4 Interactions of components of 
application and diagnosis systems 

Automatic check and adjustment of interfaces to 
guarantee functional integrity of communicated 
information, run-time monitoring of timing correct-
ness of interactions 

 
 

BRIDGE made a step forward in cognitive engineering by applying run-time 
checking, correcting and warning procedures that a human normally learns and 
applies for fulfilling its tasks. In cases when automatic correction of a mishap is 
not possible, the diagnosis system informs the human operator about the potential 
problems that might have occurred during the performance of the overall system 
and in the knowledge base and in some cases provides recommendations for 
corrective actions. 

 
 

5. CONCLUSIONS 
 
Although in practice of software-intensive systems and automation the use of 

formal verification methods is often “forgotten”, its power and advantages in 
verifying the correct behaviour and assessing the quality of service of the system 
is well understood. In many cases the practical use of formal methods is hindered 
by the excessive cost involved (in terms of additional processing power and 
required mathematical experience of developers). In some cases low confidence 
in proofs (because of overly sophisticated and not quite pertinent to the situation 
theory) has some influence on the applicability of formal methods.  

The latter comment is true in the case of timing analysis of interactions (and 
any timing analysis at early stages of system development) and by handling time-
sensitive proactive behaviour. There is a real need for deeper study of timing and 
proactivity issues – may be by co-constructing autonomous agents [33] – to 
provide tools for engineers to evaluate the impact of their design decisions in a 
structured manner, also in the case of new emerging industrial computer 
applications. Recent statistics indicates that more than half of all the errors, 
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detected during a complete software life-cycle, stem from the early stages: user 
requirements, imposed constraints and restrictions and specification. The situa-
tion was almost similar at the end of 1960s. From the system engineering point of 
view it is true that many inconsistencies and errors actually stem from early 
stages of the life-cycle of the system, and are due to the integral effect of many 
minor approximations applied in related theories, algorithms and models. Just 
think of a stable control algorithm that becomes instable due to excessive jitter of 
a time unit in a computer application. 

It seems that by improving interdisciplinary collaboration in system engineer-
ing one might avoid many incoherent or inconsistent requirements and thus 
easily correct logical and temporal features in software specification that may 
lead to potential errors. The irony is that even the most advanced software 
engineering approaches (e.g. UML and MDA) are entirely dependent on the 
quality of pre-software research – user requirements to the system, system 
specification plus requirements and constraints to software. An encouraging fact 
is that UML models have been used for describing non-software entities; still the 
coherence of various UML descriptions is usually reasoned semi-formally or 
even informally. 

When turning attention to automatic software code generation, after diligent 
refinement of software models the importance of interdisciplinary collaboration 
becomes even clearer. The correct interaction between software models, the 
models of control strategies developed by the control engineer, the systems 
architecture developed by the system engineer and the behaviour of automatically 
generated software, running on the target processors, are essential for the correct 
behaviour of the system. Static analysis of the logical and timely behaviour of the 
system will allow to assess and correct errors in early stages of development, 
assuming that there is no emergent behaviour. The majority of new computer 
applications, however, exhibit a noticeable share of emergent behaviour, caused 
by potential proactivity of the components and by incompletely known properties 
of the latter. If the autonomy of components allows for dynamic restructuring of 
the system, then the static analysis should be complemented by dynamic run-time 
analysis. Dynamic run-time analysis of the emergent behaviour has not yet 
attracted sufficient attention of the researchers. 

System engineering for software-intensive systems has some distinctive 
features with respect to other engineering disciplines. People have not yet accepted 
that software has “natural” limits as well as other components built from “real” 
materials. Software is not infinitely flexible and malleable. This paper suggests that 
a reasonably sophisticated time model together with interaction-centred models of 
computation provide a better understanding of inherent limitations of software-
intensive systems and reduces the complexity of system design. Such models 
encourage an integrated view on a system as a collaborating entity comprising 
natural world components, (proactive) computing components and humans. 
Computations are considered as processes invoked by interactions with the non-
computer world. The explicit interaction between computing system and its 
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environment sets natural limits on absolute freedom of thought that often has been 
believed to be the basic characteristics of software in stand-alone computers in a 
virtual world. 
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2.  osa:  Ajatundliku  tehnoloogia  areng 

 
Leo Mõtus, Robertus A. Vingerhoeds ja Merik Meriste 

 
Artiklis on peamine tähelepanu pööratud ajatundlikele interaktsioonikeskse-

tele arvutusmudelitele ja proaktiivsete komponentide kasutuselevõtust tingitud 
muudatustele süsteemide loomiseks kasutatavates tehnoloogiates. Näidete abil on 
illustreeritud uusi ideid süsteemide arendamise keskkonna loomiseks, nende 
realiseerimise protsessi ning mõningaid sellega seotud raskusi. 

 
 


