
 18

Proc. Estonian Acad. Sci. Eng., 2005, 11, 1, 18–30

Challenges for real-time systems engineering.
Part 2: Towards time-aware technology

Leo Motusa, Robertus A. Vingerhoedsb and Merik Meristec

a Department of Computer Control, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn,

Estonia; leo.motus@dcc.ttu.ee
b Ecole Nationale d’Ingénieurs, Av. d’Azereix, 65016 Tarbes, France; eaai@wanadoo.fr
c Institute of Technology, University of Tartu, 50090 Tartu, Estonia; merik.meriste@ut.ee

Received 26 March 2004

Abstract. This part of the paper discusses evolution trends of the theory and technology in time-
aware interaction-centred models of computation and in time-aware multiagent systems that foster
the emergence of a multidisciplinary environment, capable to support analysis of design decisions
at the early development stages of time-critical software-intensive systems.

Key words: real-time systems, time-critical systems, proactive components, interactive computing.

1. THEORETICAL AND TECHNOLOGICAL NEEDS OF
SOFTWARE-INTENSIVE SYSTEMS

Software-intensive systems form the major part of contemporary computer

applications. This class contains embedded and real-time systems, proactive
systems, a remarkable part of interactive problem solvers and decision-support
systems, etc. All such systems have pretty similar theoretical and technological
needs and expectations that differ from those characterizing data processing and
conventional information processing systems. In the first part of this paper [1]
several application areas of software-intensive systems were surveyed, with the
focus on new requirements to the theory and technology arising from those
applications.

Based on this survey one can distinguish three sources of system designer’s
worries:
– increased complexity of systems with all its implications;
– incoherence of the applied theory of computation and the actual computation

needed in those systems;

 19

– cumulative approximation effects of a variety of theories and algorithms
integrated into systems.
Some emerging methods that may reduce the worrying influence of the

above-listed factors were also pointed out in [1].
Rapidly increasing complexity of systems can remarkably better be controlled if

systems were built from autonomous and proactive components. Eventually this
will lead the today wide-spread component-based systems to multi-agent systems.
Another emerging method for coping with the complexity is to introduce time-
awareness to the systems and to their components. This enables to substitute many
complicated causal relations with appropriate time constraints that have
approximately similar impact on system behaviour [2,3]. It is interesting to note that
both of these methods have been thoroughly tested in the history of human society.
Another reason for introducing time-awareness to systems, in addition to direct
reduction of the complexity, is the potential need for time-selective communication
in a system that contains autonomous and proactive components. Especially in the
cases where a computer-based component has to communicate with a non-
computer component of the system from the natural or artificial environment.

Incoherence between the available and required theory of computation has
been detected since systems started to perform more demanding tasks, e.g. in
safety- and time-critical applications, besides becoming more and more complex.
The conventional belief of a computer scientist that holds in conventional applica-
tions – correct prescriptive description fully determines the system behaviour –
does not hold in the majority of software-intensive applications. Many researchers
have been working intensively to cope with the emerging behaviour that is
generated dynamically during the operation of new systems [2,4–7]. In spite of many
interesting theoretical results, the commercially available tools for system develop-
ment are still not quite coherent with the required theoretical basis. It means that on
the average the theory for new models of computation is not mature and is at the
moment lagging behind the system building practice. For instance, think about the
long history of practical time-constraint stream processing and the not too
advanced status of the corresponding theory, or about many empirical (theoreti-
cally not thoroughly studied) issues in the foundations of the UML.

Theoretically and practically the least advanced domain is related to systematic
study of phenomena occurring at systems integration from components, e.g. impact
of the cumulative effects of approximations in various components on the systems
behaviour, and joint effects of multiple collaborating theories. For instance, the
conventional theory for proving stability of a control algorithm is only of limited
use when the algorithm is implemented on a multiprogrammed computer, because
the time unit as implemented in a computer is of random length and therefore is
inconsistent with the assumptions of the conventional stability theory. Another
sample problem from this domain is related to the effects of small incoherence in
the ontology of interacting components of a system. Ontology is usually considered
as a static notion. In order to make any two components to collaborate, they should
have a common ontology. If not, then at least one of the components should be able

 20

to modify its ontology in order to understand its partner. In proactive component-
based software-intensive systems one actually needs the notion of interactive
ontology that is not sufficiently studied yet. Interactive ontology is related to
capabilities for adapting to, or learning from perceived experience.

From the practitioner’s point of view it would be ideal to have a unified
system development framework that caters for the above listed worries, and
integrates tools for handling all the different involved theories and available
practical knowledge into an easily usable design environment. Putting together
the evolution trends that exist today – e.g. those supported by the Object
Management Group (OMG) consortium (http://www.omg.org), Foundation for
Intelligent Physical Agents (FIPA, http://www.fipa.org), and many individual
researchers – the outlines of such an ideal framework become predictable. The
development of systems starts from preliminary system engineering study that
continues with elaboration of the preliminary concepts in a model space. Today a
realistic alternative is to apply MDA-based technologies [8] as UML and its
profiles (e.g. real-time UML and Agent UML), or to use the concept of UML
model processors (that semi-automatically enables to apply different theories for
formal analysis of different aspects of the design [9]). Run-time monitoring and
diagnosis-related functions are to be added to the future system during its design
stage, in addition to periodic formal analysis of the design by using model
processors. Run-time monitoring and diagnosis has an important role in keeping
the emergent behaviour within the acceptable limits. The completed design is
then transformed into code by code generators (or in more sophisticated cases by
agent composers, synthesizers, etc.), verified and tested.

The rest of this paper focuses on surveying the evolution of new models of
computation (that form the basis for the elaboration of methods potentially used
in new UML model processors), development and application of cognitive
engineering methods and elaboration of methods for building and analysing time-
aware multi-agent systems.

2. TIME-AWARE INTERACTION-CENTRED MODELS
OF COMPUTATION

A short introduction to the research of interaction-centred models of computa-

tion was given in the first part of this paper. This part focuses on the survey of
the evolution of time-aware concepts in modelling interaction-centred computa-
tion. In other words, this is a survey of attempts to re-introduce the explicit
notion of time into computer science with the final goal of getting better support
to behavioural analysis of embedded real-time systems, time-aware multi-agent
applications and the rest of software-intensive systems. Pragmatically, the
designers are looking for models that possess the capabilities:
– to handle multiple data-streams simultaneously (act as a multi-stream inter-

action machine [4]);

 21

– to capture time constraints imposed not only upon performance, activation
and process execution deadlines, but also upon inter-process interactions and
validity intervals of data and events;

– to reason about the coherence of the imposed time constraints and to verify
that the system requirements, specification, design, and implementation
satisfy the imposed time constraints.
Characteristic to the time-critical software-intensive systems is that they have to

match phenomena that occur in different environments – in a computer, engine,
chemical processes, mechatronic device, etc. Different time-counting systems may
be used in each of those environments, whereas the computer has to be aware of all
those time-counting systems. Introduction of proactive components increases
pressure for multiple, simultaneous time-counting systems and time concepts [10,11].
This is the reason why time model to be used in software-intensive systems must
be more sophisticated than the one used in conventional computer science.

Metric time quietly started to infiltrate into computing systems about three
decades ago. Consider, for instance, timed Petri nets [12], a variety of temporal
logics [13,14], and timed process algebras [15] that were introduced and mostly also
successfully applied. For different reasons, any of the listed methods did not hold
one or more of the above listed capabilities. For instance, Petri nets are not able
to describe multi-stream processing since Petri nets have been proved to be
equivalent to Turing machines. Besides, the used time model in timed Petri nets
was too simplified to capture all the required time constraints. Temporal logics
have two typical (and somewhat related) limitations:
– most of the introduced temporal logics have the expressive power that is

equivalent or below that of the first-order predicate logic and therefore cannot,
in principle, handle multi-stream processing that needs higher-order predicate
logic [2,16,17];

– they cannot capture all the required time constraints (e.g. those imposed on
inter-process interactions and on validity intervals of data and events) due to
oversimplified time model used.
The application domain of timed-process algebras was limited mainly because

of the oversimplified time model, and in some cases because of the applied dense
(continuous) time presentation [15]. The use of continuous time is the dream of
modellers who just describe systems, but could be a nightmare for synthesizers of
new systems because of major approximations required when implementing the
designs on digital computers, and also because of many potential paradoxes
related to causal reasoning and detecting the quantitative order events.

Almost simultaneously with Milner’s interaction-centred model of computa-
tion CCS [18], completely independently and with different purpose and different
arguments Quirk and Gilbert published the first time-aware interaction-centred
model of computation [5]. This model did not result from smooth evolution of
conventional scheduling theory, temporal logic, timed process algebra related
research, timed Petri nets, or any other timed theory of computation. It just stated
that each component in a system has a right for its own time-counting system,

 22

and this possibility should be considered when designing inter-component
communication. The major innovative ideas introduced by Quirk and Gilbert were:
– a remarkably more sophisticated time model that enables each computing

process to have its own time-counting system (and supports a multitude of
time concepts, see for philosophical background [10]);

– explicit description of a non-terminating program with a set of repeatedly
activated terminating programs and with explicit identification of the activa-
tion instants and time constraints; so far, conventional computer science
considered non-terminating programs as not verifiable (there is no point in
verifying properties of a non-terminating algorithm).
Pragmatically speaking, Quirk and Gilbert in [5] pointed to the stream-proces-

sing essence of a non-terminating program and also pointed to the necessity and to
a method of verifying non-terminating programs. The inner structure of a non-
terminating program can be represented by a set of interacting and countable
number of times re-activated terminating programs [5,19], or by a set of persistent
Turing machines [16], or by a multistream interaction machine [4]. Unlike persistent
Turing machine and multistream interaction machine (as defined by Wegner) and
interactive ASM [6,20] that are not aware of time, the alternative suggested in [5,19]
has explicit time awareness. Obviously the search for time-aware interaction-
centred model of computation should depart from the ideas of Quirk and
Gilbert [5].

One of the key issues when ensuring time awareness of systems and their
models is the selection of concepts for time models introduced to software-
intensive systems. Time models as used in real-time systems were discussed in
1993 in [21] and did not attract wide attention. The major breakthrough in using
sophisticated time models for building software systems was invoked by OMG
decisions to fix a time model for RT CORBA and UML profile for scheduling,
performance and time [9,22]. Similarities between OMG-adopted time models and
those published in 1993 are discussed in [11].

Recent progress in the practice of time-aware interaction-centred models of
computation is related to UML. It was demonstrated in [23] that UML model
presents multi-stream interaction-centred computations. Before elaboration of
UML profile for scheduling, performance and time, together with the concept of
UML model processors [9], experiments were made to introduce time to pre-
UML object-oriented models [24] and to test an approach that later became
known as UML model processors.

3. EXAMPLES OF PRACTICAL APPLICATION OF NEW MODELS

OF COMPUTATION

As discussed in [25], several ideas of time-aware interaction-centred models of

computation have been put in place and experimentally tested in the project
LIMITS. This project developed and evaluated the basic ideas of a new
generation of real-time software engineering tools. LIMITS was based on a

 23

highly innovative methodology (the Q-methodology [2]), whose capacity to
model the real-time behaviour of software is mathematically proved – its
description and analysis power is equivalent to a weak second-order predicate
calculus [17]. As claimed independently in [16], the necessity for higher-order
predicate calculus and the use of forced (true) concurrency is characteristic to
interaction-centred models of computation. Sophisticated time model used as an
essential part of the formalism makes it possible to handle, in principle, all the
temporal aspects of industrial applications of information technologies, including
timing analysis of interactions [26].

In order to avoid the common curse of formal methods – too high require-
ments on the mathematical knowledge of their users and bad scalability – the
Q-methodology focuses on universal properties whose existence conditions can
be proved beforehand. The LIMITS hides most of the formal aspects of the
methodology from the system designer and in many cases the timing analysis is
reduced to simple checking the suitability of system parameters or their combina-
tions. Such an approach enables one to decompose the verification of the
properties of a system into verification in the large (interactions of components,
overall behaviour of the system) and verification in the small (specific properties
of components that enable matching the ontology of components and systems).
Verification in the large can be started at very early stages of system develop-
ment, immediately after the user requirements and the preliminary system
architecture have been fixed – even before the algorithms are finally selected.
Such an early start of formal analysis improves economic feasibility of a project.
As an additional value, LIMITS generates an executable prototype of the system
that is based on the formally checked preliminary architecture and user require-
ments. The animation of this prototype improves the end-user’s understanding of
the operational properties of the future system and facilitates the end-user’s
participation in the software process.

Considering the rather narrowly dedicated character of LIMITS (timing
correctness of interactions is its main goal), it should be used in combination with
more generally oriented development tools. Therefore LIMITS was seamlessly
integrated with, at that time upcoming, Object Modelling Technique [24]. Later
on LIMITS was used in close cooperation with two different UML tools. This
probably was the first experiment of semi-automatic navigating from an object-
oriented design environment to a formal analysis environment, and returning
with inserted corrections and modifications to the object-oriented environment to
continue the development. Similar idea has been applied later [9] in the specifica-
tion of UML model processors to navigate out of the UML environment for
schedulability and performance analysis and to return with the modified model to
the UML environment.

Tools like LIMITS become absolutely necessary for developing applications
where temporal coherence of imposed time constraints and behavioural charac-
teristics of the components is as important as the logical exactitude of the
treatment of functional tasks. In other words, LIMITS-like tools can remarkably

 24

reduce development cost and related risks of potential accidents (by setting
implicit limits on the emergent behaviour) when developing safety- and time-
critical applications. Some aspects of such an application are discussed in [27],
where the analysis engine of LIMITS is used for run-time monitoring subsystem
in an industrial diagnosis tool BRIDGE.

Behavioural and timing analysis of interactions in LIMITS takes place in
three steps that can be iterated depending on the interim results of the analysis:
1) analysis of individual building elements of the system (processes and

channels); all the values characterizing those elements (e.g. activation
instants, execution duration, intervals for interactions, validity intervals for
variable values, etc.) are given as interval estimates;

2) analysis of interacting pairs of processes (separate theorems have been proved
for each type of channels that connect two processes); three basic types of
interactions are separately analysed: synchronous, semi-synchronous and
asynchronous;

3) analysis of the group behaviour of interacting processes or that of the whole
system; analytical min-max performance estimates can be computed, potential
static deadlocks caused by time-selective inter-process communication and by
requirements to validity intervals of interchanged data are detected and
achievability of required synchronization precision in clusters is checked.
The UML is de facto rapidly growing towards an international standard and is

already standardized within the OMG consortium. However, a designer of
software-intensive systems, working for industry, would need several improve-
ments in UML-related methodologies and tools before they meet designer’s
pragmatic requirements. For instance, better support to considering location-
related properties and to acquiring and storing information about temporal
characteristics that are required for timing analysis of interactions is needed. The
general-purpose UML approach and Agent UML profile, similarly to its profile
on schedulability, performance and time, should be seamlessly integrated with
formal analysing methodologies (e.g. by applying UML model processors).

The conclusion is that today real-time UML and MDA offer enough flexibility
and mechanisms to successfully move towards application of interaction-based
models of computation in industrial systems. A step is now needed to be made at
automation, control theory, systems science and computer science level to take
these ideas on board.

4. NEED FOR COGNITIVE ENGINEERING

The evolution of conventional system engineering, i.e. methodology and tools

for building artificial systems from passive components, is more or less on track
in spite of comparatively late acceptance of the time-sensitivity concept. At the
same time the effect of proactive components on systems behaviour has not yet
been seriously studied by the mainstream system engineering. A pretty strong
research community that builds applications based on agents and multi-agent

 25

systems exists. However, they tend to study systems, built entirely and only from
proactive components (e.g. distributed artificial intelligence systems) and focus
essentially on issues of artificial intelligence.

It is true that distributed AI and multi-agent systems provide good arguments
for the interaction-centred model of computing. Still, majority of industrial
applications of software-intensive systems tend to comprise passive, active,
reactive and proactive components. Active and proactive components can be
found in a computer system as well as in its natural and artificial environment
including human operators and supervisors. Such a non-homogeneous component
base of a system poses many new problems in its behaviour analysis that, so far,
have been studied neither in multi-agent systems nor in common software-
intensive technical applications. At the moment the integral effect of those
problems is approximately covered by the term “emergent behaviour”.

Emergent behaviour is caused, in addition to incomplete knowledge about
causal relations, by adaptation, learning and self-structuring capabilities of the
components. The latter capabilities are based on the perceptive behaviour of the
system (or its components) that leads to self-assessment capability (or to using
automatic assessment by a special monitor) of its behaviour with respect to its
goal function. First awkward steps have been made to study and describe
formally the time awareness of the perceptive behaviour [28] in the context of
proactive system design. Run-time assessment of system behaviour is used as a
special case and is still considered too expensive for routine use. Adaptation and
learning have been studied mostly as stand-alone phenomena, separately from
problems of collecting the required information and also separately from
questions related to interactive ontology. Adaptation and learning are commonly
used off-line since run-time adaptation may insert too intensive emergent
behaviour and thus create too high safety risks.

Looking at today’s situation, there is a clear trend to move from human-
centred systems to human-supervised systems [29]. This has become possible by
introducing proactive components into artificial systems and by increasing the
autonomy of the component by decision-making in artificial systems. In order to
successfully build and operate these next generation systems one has to consider
three aspects of the systems. First, one has to continue improving smartness and
proactivity of artificial systems as discussed in the previous sections. Two other
aspects are more human-related – to improve the design methodologies and
human interfaces for system operators by paying more attention to human
limitations and capabilities. The natural (although often implicit) goal, when
designing artificial systems, is that the designed system should augment the
capability of a human being, improving its capability to stay in command of the
situation whenever so desired.

Therefore the future evolution of system and software engineering and their
relation to system and software architecture should cater for introduction of those
“human” aspects to existing approaches and technologies. The human aspects are
well represented and studied in the context of social sciences, e.g. in cognitive

 26

psychology. Some engineering aspects of social sciences have been studied in
connection with artificial intelligence, artificial life, cybernetics and other disciplines.
A new discipline has emerged, called cognitive engineering. The majority of
cognitive engineering research has been focused on human-machine collabora-
tion [30,31]. Leveson [32] claims that the key to successful building of complex systems
is improved integration of system engineering, software engineering and cognitive
engineering (including research in interactive ontology).

Tennenhouse [29] suggests that proactive computing has been invoked by the
same reasons that led to the emergence of cognitive engineering. Indeed, behaviour
of artificial proactive components often resembles closely some behavioural aspects
of biological creatures/entities, e.g. co-constructing autonomous agents [33]. The
increasing number of proactive components in artificial systems and increasing
autonomy of components (e.g. freedom for making their own decisions based on the
information acquired from their environment) leads to a new application domain of
cognitive engineering in artificial systems. Many concepts and notions used
traditionally for analysing and describing human behaviour can be applied to
studying individual and groupwise behaviour of artificial proactive components (e.g.
agents). The conventional problems of matching characteristic features and similarity
of goals that are important for efficient collaboration in human communities can also
be found in artificial world of self-organizing proactive components.

Notions like negotiations, matching ontology, competition and cooperation,
earlier applied for studying communities of biological creatures, are now well
established in the community of designers of artificial (multiagent) systems. A
new, not yet thoroughly studied problem is the evolution of the ontology of the
components during the negotiation (or perception) process. Usually ontology is
studied (e.g. in philosophy and linguistics) as a static property. In artificial
systems, a proactive component should preferably have interactive ontology.
That is, a component should be able to modify its ontology dynamically, if
necessary – as a new aspect of automatic adaptation and learning. Those are
some of the issues that are to be studied for improving smartness and proactivity
of artificial systems during their operation.

As an example, consider the application of cognitive engineering methods
applied in the project BRIDGE (ESPRIT 22154). The aim was to create a design
environment for diagnosis systems for large-scale complex systems [25]. The
theoretical foundation of the project was built around a case-based reasoning
system, modified to meet the requirements of the time-critical environment.
Specific requirements of the application were, for instance, deterministic time
required for reasoning. Most of the variable values in the system had validity time
intervals, in some cases additional tests had to be made (within fixed time
intervals) on the diagnosed object. Whenever a substantial change in the case base
occurred, the time-deterministic reasoning system had to be readjusted.

Some common types of knowledge and actions that were automatically
checked in the BRIDGE are illustrated in Table 1. It is clear that different
techniques are to be applied to different types of knowledge and actions.

 27

Table 1. Different knowledge needs different processing methods

No. Knowledge or actions Checks and analysis performed

1 Knowledge base of the application Functional integrity of the base, integrity of data and
relations, time coherence of variable values, imposed
constraints and restrictions

2 Case base used for diagnosis Coverage of the activation conditions of different
parts of the application, coverage of the expected
outcome in abnormal conditions, assessing maximum
reasoning time after each extension of the case base

3 Correctness and quality of diagnosis Influence of activation conditions on reachability of
necessary diagnosis for this condition, influence of
uncertainty in activation conditions on the correctness
of the diagnosis, time integrity of conditions and the
diagnosis

4 Interactions of components of
application and diagnosis systems

Automatic check and adjustment of interfaces to
guarantee functional integrity of communicated
information, run-time monitoring of timing correct-
ness of interactions

BRIDGE made a step forward in cognitive engineering by applying run-time
checking, correcting and warning procedures that a human normally learns and
applies for fulfilling its tasks. In cases when automatic correction of a mishap is
not possible, the diagnosis system informs the human operator about the potential
problems that might have occurred during the performance of the overall system
and in the knowledge base and in some cases provides recommendations for
corrective actions.

5. CONCLUSIONS

Although in practice of software-intensive systems and automation the use of

formal verification methods is often “forgotten”, its power and advantages in
verifying the correct behaviour and assessing the quality of service of the system
is well understood. In many cases the practical use of formal methods is hindered
by the excessive cost involved (in terms of additional processing power and
required mathematical experience of developers). In some cases low confidence
in proofs (because of overly sophisticated and not quite pertinent to the situation
theory) has some influence on the applicability of formal methods.

The latter comment is true in the case of timing analysis of interactions (and
any timing analysis at early stages of system development) and by handling time-
sensitive proactive behaviour. There is a real need for deeper study of timing and
proactivity issues – may be by co-constructing autonomous agents [33] – to
provide tools for engineers to evaluate the impact of their design decisions in a
structured manner, also in the case of new emerging industrial computer
applications. Recent statistics indicates that more than half of all the errors,

 28

detected during a complete software life-cycle, stem from the early stages: user
requirements, imposed constraints and restrictions and specification. The situa-
tion was almost similar at the end of 1960s. From the system engineering point of
view it is true that many inconsistencies and errors actually stem from early
stages of the life-cycle of the system, and are due to the integral effect of many
minor approximations applied in related theories, algorithms and models. Just
think of a stable control algorithm that becomes instable due to excessive jitter of
a time unit in a computer application.

It seems that by improving interdisciplinary collaboration in system engineer-
ing one might avoid many incoherent or inconsistent requirements and thus
easily correct logical and temporal features in software specification that may
lead to potential errors. The irony is that even the most advanced software
engineering approaches (e.g. UML and MDA) are entirely dependent on the
quality of pre-software research – user requirements to the system, system
specification plus requirements and constraints to software. An encouraging fact
is that UML models have been used for describing non-software entities; still the
coherence of various UML descriptions is usually reasoned semi-formally or
even informally.

When turning attention to automatic software code generation, after diligent
refinement of software models the importance of interdisciplinary collaboration
becomes even clearer. The correct interaction between software models, the
models of control strategies developed by the control engineer, the systems
architecture developed by the system engineer and the behaviour of automatically
generated software, running on the target processors, are essential for the correct
behaviour of the system. Static analysis of the logical and timely behaviour of the
system will allow to assess and correct errors in early stages of development,
assuming that there is no emergent behaviour. The majority of new computer
applications, however, exhibit a noticeable share of emergent behaviour, caused
by potential proactivity of the components and by incompletely known properties
of the latter. If the autonomy of components allows for dynamic restructuring of
the system, then the static analysis should be complemented by dynamic run-time
analysis. Dynamic run-time analysis of the emergent behaviour has not yet
attracted sufficient attention of the researchers.

System engineering for software-intensive systems has some distinctive
features with respect to other engineering disciplines. People have not yet accepted
that software has “natural” limits as well as other components built from “real”
materials. Software is not infinitely flexible and malleable. This paper suggests that
a reasonably sophisticated time model together with interaction-centred models of
computation provide a better understanding of inherent limitations of software-
intensive systems and reduces the complexity of system design. Such models
encourage an integrated view on a system as a collaborating entity comprising
natural world components, (proactive) computing components and humans.
Computations are considered as processes invoked by interactions with the non-
computer world. The explicit interaction between computing system and its

 29

environment sets natural limits on absolute freedom of thought that often has been
believed to be the basic characteristics of software in stand-alone computers in a
virtual world.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge comments made by many colleagues.

Partial financial support from the Estonian Science Foundation (grant No. 4860),
and the Estonian Ministry of Education (projects Nos. 0142509s03 and
0182565s03) is appreciated.

REFERENCES

 1. Motus, L., Vingerhoeds, R. A. and Meriste, M. Challenges for real-time systems engineering.
Part 1: State of the art. Proc. Estonian Acad. Sci. Eng., 2005, 11, 3–17.

 2. Motus, L. and Rodd, M. G. Timing Analysis of Real-time Software. Pergamon/Elsevier, 1994.
 3. Meriste, M. and Motus, L. On models for time-sensitive interactive computing. Lecture Notes

in Comput. Sci., 2002, 2329, 156–165.
 4. Wegner, P. Why interaction is more powerful than algorithms. Comm. ACM, 1997, 40, 80–91.
 5. Quirk, W. and Gilbert, R. The Formal Specification of the Requirements of Complex Real-time

Systems. AERE, Harwell, Rep. No. 8602, 1977.
 6. Gurevich, Y. Evolving algebras. In Proc. 13th IFIP Congress, 1994, 1, 423–427.
 7. Milner, R. Communicating and Mobile Systems: The PI-calculus. Cambridge Univ. Pr., 1999.
 8. Mellor, S. J., Kendall, S., Uhl, A. and Weise, D. MDA Distilled. Addison-Wesley, Boston,

2004.
 9. Object Management Group. UML Profile for Schedulability, Performance, and Time:

Specification. OMG document ptc/2002-03-02, Needham, 2002.
10. Denbigh, K. G. Three Concepts of Time. Springer Verlag, Berlin, 1981.
11. Motus, L. Modeling metric time. In UML for Real: Design of Embedded Real-time Systems

(Selic, B., Lavagno, L. and Martin, G., eds.). Kluwer, Norwell, 2003, 205–220.
12. Sifakis, J. Use of Petri nets for performance evaluation. Acta Cybern., 1979, 4, 185–202.
13. Manna, Z. and Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems. Springer

Verlag, New York, 1992.
14. Ostroff, J. S. Temporal Logic for Real-time Systems. Research Studies Pr., Taunton; J. Wiley,

New York, 1989.
15. Caspi, P. and Halbwachs, N. A functional model for describing and reasoning about time

behaviour of computing systems. Acta Inform., 1986, 22, 595–627.
16. Wegner, P. Interactive foundations of computing. Theor. Comput. Sci., 1998, 192, 315–351.
17. Lorents, P., Motus, L. and Tekko, J. A language and a calculus for distributed computer control

systems description and analysis. In Software for Computer Control, Selected Papers from
the Fourth IFAC/IFIP Symposium. Oxford. Pergamon/Elsevier, 1986, 159–166.

18. Milner, R. A. A calculus of communicating systems. Lecture Notes in Comput. Sci., 1980, 92.
19. Motus, L. Timing problems and their handling at system integration. In Artificial Intelligence in

Industrial Decision Making, Control and Automation (Tsafestas, S. G. and Verbrug-
gen, H. B., eds.). Kluwer, 1995, 67–88.

20. Börger, E. The origins and the development of the ASM method for high level system design
and analysis. J. Universal Comput. Sci., 2002, 8, 2–74.

21. Motus, L. Time concepts in real-time programming. Control Eng. Pract., 1993, 1, 21–33.

 30

22. Object Management Group. Enhanced View on Time. Version 1.1. OMG document
formal/02/05/07, 2002.

23. Goldin, D., Keil, D. and Wegner, P. An interactive viewpoint on the role of UML. In Unified
Modeling Language: Systems Analysis, Design, and Development Issues (Siau, K and
Halpin, T., eds.). Idea Group Publ., Hershey, PA, 2001, 250–264.

24. Motus, L. and Naks, T. Formal timing analysis of OMT designs using LIMITS. Comput. Syst.
Sci. Eng., 1998, 13, 161–170.

25. Vingerhoeds, R. A. Génie d’automatisation et systèmes intélligents temps réels, Proposition
d’une méthodologie de conception. Dossier d’habilitation a diriger des rechèrches, Institut
National Polytechnique de Toulouse, 2002.

26. Selic, B. and Motus, L. Using models in real-time software design. IEEE Control Syst. Mag.,
2003, 23, 31–42.

27. Naks, T. and Motus, L. Handling timing in a time-critical reasoning system – a case study. Ann.
Rev. Control, 2001, 25, 157–168.

28. Motus, L., Meriste, M., Kelder, T., Helekivi, J. and Kimlaychuk, V. A test-bed for time-
sensitive agents – some involved problems. In 9th IEEE International Conference on
Emerging Technologies and Factory Automation. Lisbon, 2003, 645–651.

29. Tennenhouse, D. Proactive computing. Comm. ACM, 2000, 43, 43–50.
30. Vicente, K. J. The Human Factor: Revolutionizing the Way People Live with Technology.

Knopf Canada, Toronto, 2003.
31. Crowder, R., Bracewell, R., Hughes, G., Kerr, M., Knott, D., Moss, M., Clegg, C., Hall, W.,

Wallace, K. and Waterson, P. A future vision for the engineering design environment: a
future sociotechnical scenario. In Proc. 14th International Conference on Engineering
Design (Folkeson, A., Gralen, K., Norell, M. and Sellgren, U., eds.). Stockholm, 2003.

32. Leveson, N. G. Software engineering: stretching the limits of complexity. Comm. ACM, 1997,
40, 129–131.

33. Kaufmann, S. A. Investigations. Oxford University Press, 2000.

Sardsüsteemide arendustehnoloogia kitsaskohad.
2. osa: Ajatundliku tehnoloogia areng

Leo Mõtus, Robertus A. Vingerhoeds ja Merik Meriste

Artiklis on peamine tähelepanu pööratud ajatundlikele interaktsioonikeskse-

tele arvutusmudelitele ja proaktiivsete komponentide kasutuselevõtust tingitud
muudatustele süsteemide loomiseks kasutatavates tehnoloogiates. Näidete abil on
illustreeritud uusi ideid süsteemide arendamise keskkonna loomiseks, nende
realiseerimise protsessi ning mõningaid sellega seotud raskusi.

