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Abstract. This paper describes and proves an algorithm for approximating the high-voltage power 
forecasted consumption with a model function. The first and second derivatives are used to 
describe the real consumption function. The algorithm is used in Eesti Energia AS for the analysis 
and technical management of large-scale transmission networks. 
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1. INTRODUCTION 
 
In order to calculate power consumption regimes for the time ahead, one 

needs consumption forecasts for that time. As a result, the system operators face 
short-term forecasting problems, involving the loads during the next hour, the 
next day, and the next week [1]. In our experiments, forecasting short-term 
consumption for high-voltage power consumption, the feed-forward neural 
networks (FNN) are used [2,3]. 

Our goal was to develop an algorithm for short-term forecasts that would give 
the consumption data per hour for eight days with the required accuracy. The 
generated consumption forecast is usable at the national dispatch center. 

For the consumption forecast on the day x  for the day 1+x , data up to the day 
1−x  is available. For the first four days, an error of ± 3% suggests an accurate 

forecast, and for the last four days an error of ± 6% indicates a high accuracy. 
Separate neural networks were developed for all the hours of the 8 days. To 

establish the input data for a short-time forecast of power consumption, a day 
was divided into four 6-hour periods. Every hour was described by the statistical 
consumption data, temperature, light intensity, the number of the day (1–7) in the 
week, and the number of the month. As for the temperature only minimum and 
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maximum temperature of a forecasted day was used, because other information 
was not available. However, such an information is not sufficient to forecast the 
consumption curve, because the functional relation between temperature and 
consumption is missing. To create a functional relation, the temperature for each 
hour is created through its minimum and maximum values. Unfortunately, it 
means that FNNs of successive hours converge almost independently to the local 
minimum [2,4–6]. In reality, the hourly consumptions are related because con-
sumption has inertia. 

Thus the real consumption function was not established (not sufficiently 
smooth and may occasionally be illogically non-monotonic) because all hourly 
data of consumption are forecasted autonomously. 

There are two possibilities to improve the consumption forecast, either by 
using the temperature or the consumption. Because we have insufficient informa-
tion about the temperature of a forecasted day, consumption was chosen. By 
using consumption it is possible, for instance, to forecast the average consump-
tion of a forecasted day and then add this value to the hourly FNN. By adding a 
new input to the FNN, the learning speed will be retarded because of the 
voluminous FNN calculus [2,5,7]. In order to solve this problem, when the data 
from the FNN is within the required accuracy but do not satisfy the curve of 
consumption (sometimes FNN output does not have a derivative), we have to 
create a logic that would enable us to approximate the FNN data with a function. 
The approximation result should guarantee that all approximated hours remain in 
the permitted bounds around the real consumption (Fig. 1.). 

The proposed methodology is less voluminous than adding a new input to the 
FNN. Thus, we are faced with the problem of construction of a model of the 
consumption curve. 

By the conventional approach [8] to solving an approximation problem, it is 
presumed that the real function is known. It means that actual values of the 
function at specific points are known.  The other presumption is that it is possible  
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Fig. 1. The curves for approximate short-time consumption forecast. 
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to construct a set of sub-functions which converge to the real function. The speed 
of convergence (in Chebyshev meaning) is investigated with the least squares 
method. Thus, in the conventional theory of approximation, the convergence of 
functions is established through the following steps. Firstly, a set of functions is 
selected. For that many different possibilities exist, such as the trigonometrical 
polynomial approach, algebraic approach, splines, linear functions, etc. [5,8,9]. 
Secondly, the converging series of functions and its limit are determined. Finally, 
based on the conventional model of approximation the function is smoothed. 

In our case, the presumptions of the conventional approach were not satisfied. 
The curve of forecasted consumption, created with the FNN, was different from 
the real one. In addition, the values of the specific points were not known. To 
solve the problem, it was necessary to find a function, the derivatives of which 
are close to those of the model function. In our case the values of the sub-func-
tions are known only at specific points (in our case the hours of a day). However, 
these functions are not differentiable. Therefore we developed the principles for 
creating series of differentiable functions. For that purpose, convergence of the 
series of such functions to the required marginal value was proved. 

An algorithm for smoothing a selected function was developed, with a 
continuous check of whether the on-going basis of that approximation is within 
the specified limits of accuracy. 

 
 

2. INITIAL  DATA 
 
To construct a model of the consumption curve, the consumption data were 

analysed. We presumed that the consumption curve may be divided into four 
groups, inside of which the consumption is similar. 

Group 1: hours between 1 to 8 on Tuesdays, Wednesdays, Thursdays, and Fri-
days. 

Group 2: hours between 1 to 8 on Saturdays, Sundays, Mondays, and public 
holidays. 

Group 3: hours between 9 to 24 on Mondays, Tuesdays, Wednesdays, Thurs-
days, and Fridays. 

Group 4: hours between 9 to 24 on Saturdays and Sundays. 
Using the rules, described in Chapter 1, the model of the consumption func-

tion )(tf E  was created. 
The approximation engine uses the following functions as input data: 
1) an arbitrary twice differentiable (C2) function ),(tf  
2) a function of forecasted consumption ),(tf F  created through the FNN, 
3) the model of the consumption function ).(tf E  
Argument t  indicates an hour of a day: .],[ bat∈  For the algorithm it is 

presumed firstly, that 
 

,C)(),(),( 2
∈tftftf EF                                        (1) 
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and, secondly, functions )(tf F′ and )(tf E′  are equally bounded: 
 

,)(,)( BtfBtf EF ≤′≤′                                        (2) 
 

where B  is a positive constant. In fact, the condition (2) is not a restriction, 
because the high-voltage power consumption changes smoothly. The variables 

],[ ba  are selected from the interval of .]23,0[  In addition, a presumption was 
made that all the functions have an infinite amount of positive values in the 
interval :],[ ba  

 

),,0[],[: ∞+→baf ),,0[],[: ∞+→baf F ),,0[],[: ∞+→baf E         (3) 
 

and all these functions satisfy the condition  
 

,)(),(),( Ltftftf EF ∈                                          (4) 
 

where L  is a set of functions that satisfy the Lipschitz condition [10]. The 
Lipschitz condition holds, for example, for a monotone, continuous, and bounded 
function 

 

,)()( 11 ++
−≤− kkkk ttDtftf                                    (5) 

 

where D  is a positive constant and .],[, 1 batt kk ∈
+

 It is obvious that .C2
⊃L  

The goal is to find an approximated consumption curve ),(tf R  ],[ bat∈  by 
applying the function )(tf E  to the function )(tf F  in such a way that the 
following condition holds: 

 

[ ]

,)()(min)()(
)()(max

,

tftftftf E
tftff

ER

F
bat

′−′=′−′

<








−∈
∈

ε

                       (6) 

 

where ε  is a positive constant that determines the required precision. 
 
 

3. SOLUTION 
 
To solve the defined problem, to find ),(tf R  we can divide the interval ],[ ba  

into 1+m  segments m(  is a sufficiently large positive constant) as follows: 
 

:],[ 10 tt  ;],[;)()0( 10 tttBtff FF ∈<− ε ),3(01 Btt ε<−   
 

:],[ 21 tt  
 

;],[;)()( 211 tttBtftf FF ∈<− ε ),3(12 Btt ε<−  
 

 
:],[ 32 tt  

 
;],[;)()( 322 tttBtftf FF ∈<− ε ),3(23 Btt ε<−  

  
(7) 

     

KK

 

 
:],[ 1+mm tt  

 
;],[;)()( 1+∈<− mmFnF tttBtftf ε ),3(1 Btt mm ε<−
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Fig. 2. Usage of the derivative pivot. 
 
 
where at =0  and .1 btm =

+
 That kind of division is possible because initial 

functions are continuous. 
Let us now construct a series of functions{ } ,)( 1

∞

=nn tf  where ],[ bat∈  and the 
index n  indicates the range number of the function in the series. The values of 
the functions in the series at points },,,,{ 1210 +mtttt K  were investigated. The 
elements of the series were constructed as follows: 
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An important element in Eq. (8) is the constant ,α  ]1,0[∈α , that specifies a 
derivative pivot in the interval (Fig. 2). The derivative will be conjugated as long 
as it is parallel with the segment of the model function. 

The hypothesis is that the constructed series of functions { }∞
=1)( nn tf  converges 

to the desired approximated consumption function ),(tf R  .],[ bat∈  All short-
term consumption forecastings in ENav are based on this hypothesis. 

 
 

4. THEOREMS  AND  PROOFS 
 
To prove the convergence of the series of the functions to the desired function 

),(tf R  ,],[ bat∈  based on the common mathematical principles [11], we have to 
prove its convergence, and find the convergence speed and its marginal value 
that satisfies the condition (6). 
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Theorem 1. A series of functions { }∞
=1)( nn tf  converges to ),(tf R  where .],[ bat∈  

 

Proof. It is known that a series of functions converges when all sub-series of the 
series converge. In our context, it is not a necessary condition for the algorithm. In 
the context of our algorithm, we consider the series of functions as converging when 
one of the sub-series of the series converges to ).(tf R  To prove that { }=

∞→

)(lim tfnn
 

),(tfR  we have to prove two additional propositions: first,  
,)()( ε<− tftf Fn  where ∞= ,,1Kn  and ;],[ bat∈  second, we need to prove 

that the series { }∞
=1)( nn tf  has a marginal value [11]. 

 

Proposition 1.1. ,3)()( ε<− tftf Fn  where ∞= ,,1Kn  and .],[ bat∈  
 

Proof. If ,1=n  then proposition 1.1 is true because of definition (7). Let us 
assume that proposition 1.1 is true if .0nn =  Let us now prove that proposi-
tion 1.1 is true if .10 += nn  Here we will use the method of mathematical 
induction: 

 

[ ] ,)()()()()()()( 11 00 kFkkknkEknkFkn tftttftftftftf −−⋅−′−=−
++

α       (9) 
 

.)()()()()()()( 11 00
εα ≤−′−+−≤−

++ knkEkkkFknkFkn tftftttftftftf    (10) 
 

As we see from Eq. (10), 3)()(
0

ε<− kFkn tftf  and because the functions 
)( kE tf ′  and )( kn tf  in the second member in (9) satisfy the Lipschitz condition, 

their derivatives are bounded. It means that the second member of Eq. (10) can 
be divided into infinitely small segments of decreasing length. 

Using the same logic, we can prove for 1+kt  that .)()( 11 ε<−
++ kFkn tftf  It 

means that the proposition 1.1 is true for .10 += nn  
Let us consider the case .],[ 1+∈ kk ttt  In that case 

 

.33)(

)()()()()()()()(

1 εε ++−≤

−+−+−≤−

+ kk

FkFkFknknnFn

ttB

tftftftftftftftf
     (11) 

 

Since )( 1 kk tt −
+

 is infinitely small, we may rewrite Eq. (11) as follows: 
 

.
333

33)( 1 ε

εεε

εε =++≤++−
+ B

BttB kk                       (12) 

 

Thus proposition 1.1 is proved. 
 

Proposition 1.2. Series { }∞
=1)( nn tf  has a marginal value. 

 

Proof. In this case we face a problem of proving the convergence. Let us define A 
as 

 

[ ]
.)(max

,
tfA F

bat∈
=                                            (13) 
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We may define A in this way, because )(tf F  is continuous and each 
continuous function that is specified in a finite set is bounded: 

 

.
3

)()()()()()()( A
B

tftftftftftftf FFnFFnn +≤+−<+−= ε         (14) 

 

The  series  { } ,)( 1

∞

=nn tf  ],[ bat∈  is bounded; it means that there exists a sub-
series { }∞

=1
)(

i
i nn tf  that converges to a certain function (from the Weierstrass 

theorem [11,12]). Let us presume that this is our desired approximated consump-
tion function ).(tf R  Thus, Proposition 1.2 and Theorem 1 are proved. 
 
Theorem 2. The marginal value of the series of functions { }∞

=1)( nn tf  satisfies the 
condition  
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Proof. To estimate the marginal value of the series { } ,)( 1

∞

=nn tf  let us estimate the 
derivatives of the element 1+n : 

 

).))(()(())()(())()(( 11111 kkknkEknknknkn tttftftftftftf −′−′+−=−
+++++

     (15) 
 

We have 
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When kk tt −

+1  is small enough, it expresses a derivative 
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From Eq. (17) we can conclude that 
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knkn

tt

tftf

−

−

+

+++

1

111 )()(
 

 

converges to ).( kE tf ′  
From Proposition 1.1 we find that the same formula will converge also 

to ).( kR tf ′  It means that 
 

).()( kEkR tftf ′≈′                                             (18) 
 

Thus from Eq. (6) we can see that Theorem 2 is proved. 
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Theorem 3. ,
1

|)()(|
nn

Stftf Rn ⋅<−  if .∞→n  It means that these two functions 

have the same convergence speed (n indicates the range number of the function 

in the series). 
 
Proof. Let us estimate the convergence speed at the end points of the segment 

,],[ 1+kk tt  where .1,,1,0 += mk K  We will use Eq. (6) for a segment end point 
:1+kt  
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The left side of the basic formula of Theorem 3 can be written as 
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We have to prove the following: 
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This statement has been proved by the help of the Monte-Carlo method [4,13]. 
It is possible to prove that the other end point of the segment kt  acts in an 

analogous way. In this case we need to change the constant α  to .1 α−  
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Thus Theorem 3, when the constant α  is replaced with ),1( α−  is proved.  
It means that the constructed series of functions { }∞

=1)( nn tf  converges to the 
desired approximated consumption function ),(tf R  .],[ bat∈  

 
 

5. RESULTS 
 
An algorithm, in which iteration software is used that transforms the modelled 

consumption to the FNN-created consumption forecast, was experimented in 
ENav. Software obtained accepted results within 300 iterations. 

To speed up the convergence of the algorithm we used the following logic: 
1) select a date for which to perform a FNN forecast curve approximation; 
2) construct the model function; 
3) deduce a FNN forecasted curve using Eq. (6); 
4) shift all the extraordinary consumption values to the minimum and 

maximum values; 
5) correct the constructed curve in segments of monotone areas (it is known 

that the consumption curve has monotone areas, e.g., from hours 1 to 4 the curve 
is descending, from 4 to 8 it is ascending, etc.), and if the constructed curve does 
not fit into the stated logic, it should be corrected; 

6) if the constructed curve does not fit the model function, apply the 
approximation algorithm to the constructed curve using second derivatives of the 
functions and taking into account the condition 
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7) shift all extraordinary values to their minimum and maximum values; 
8) approximate the FNN forecast and the model function using Eq. (6). 
In the described algorithm we call the step 3 in an iterative way for 100 times, 

step 6 for 10 times, and step 8 for 50 times. This gives us better software 
performance and the same quality of result as described in the first algorithm. 

 
 

6. CONCLUSIONS 
 
This paper offers a solution to the problem of short-term forecast of high-

voltage power consumption using feed-forward neural networks. Firstly, the rules 
how to create a model function were presented. Secondly, an algorithm how to 
adduct the FNN forecasted consumption to the model function was created. At 
the same time, the needed accuracy of the forecast has to be guaranteed. The 
created algorithm will speed up the work of the FNN used for forecasting power 
comsumption. The algorithm may be used to approximate forecasted data with a 
specified accuracy. The created algorithm has been proved mathematically. 
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The described algorithm is used at Eesti Energia AS application “Event 
Navigator”, an integrated software for technical management of transmission 
networks. 
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Lühiajalise  elektrienergia  tarbimise  prognoosi  
korrigeerimine 
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Artiklis on vaadeldud närvivõrkude poolt genereeritud elektrienergia lühi-

ajalise tarbimise prognoosi korrigeerimist tarbimise etalonkõvera abil. Kirjel-
datakse kasutatud algoritmi ning tuuakse selle matemaatiline tõestus. Loodud 
algoritmi võib vaadelda kui abivahendit närvivõrkude töö kiirendamiseks. Kirjel-
datud algoritm on kasutusel Eesti Energia AS-is. 

 


