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Abstract. The paper cosiders possibilities of exploring nonlinear structural vibrations and detecting 
chaos by the wavelet method. The signal is decomposed into several lower resolution components. 
Some numerical quantities for characterizing the signal (wavelet energy distribution, Shannon and 
threshold entropy, similarity index, self-similarity) are introduced. Noisy systems are discussed. An 
example, in which the noise transfers chaotic motion to regular vibrations, is described. The 
wavelet packet method is applied; it is shown that such an approach allows to decrease the width of 
the frequency bands and gives the possibility to distinguish chaotic vibrations from random motion. 
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1. INTRODUCTION

The development of the wavelet method has been extraordinary fast. This 
technique, which was introduced by Morlet and Meyer in early 1980s, has turned 
now to a well-grounded and powerful mathematical tool. This topic has been 
treated in many textbooks from which we would recommend here [1–3]. This 
paper mainly considers the wavelet analysis of vibrations in structural dynamics. 
In this field many interesting papers have been published; to be short we shall 
refer here only to some recent papers [4–6]. 

The wavelet method could be also a valuable tool for analysing chaotic 
motions, but surprisingly there are very few papers written on this topic. Per-
mann and Hamilton [7] examined chaotic vibrations of the Duffing attractor; 
making use of the Daubechies wavelet transform, the coefficients for different 
resolution levels were computed. Zheng et al. [8] analysed vibrations of a 
cracked rotor system with the aid of the Newland wavelets; to demonstrate 
chaotic effects, the amplitudes of the frequency bands versus time were plotted. 
Wong and Chen [9] considered the case in which the frequency of harmonic 
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vibrations changes during the motion. Using the Morlet wavelets, modulus and 
phase diagrams were plotted. Ioussoupov et al. [10] integrated the Maxwell–Ploch 
equations for two-level atoms. The motion was analysed with the aid of the 
Morlet wavelets and structural Hamiltonian chaos was demonstrated. Jubran et 
al. [11] examined dynamic response of the flow induced vibrations applying again 
the Morlet wavelets. The authors of [11] drew the conclusion that the wavelet 
approach reveals more clearly than the classical methods the possible route to 
chaos. Huang and Xu [12] proposed a method for extracting chaotic signals with 
the aid of different wavelet scales. In the paper by Bukkapatnam et al. [13], a 
modified wavelet method for separation of chaotic signals was developed. 

As a touchstone of new approaches concerning chaotic motion, the well-
studied Duffing, Lorenz, and Van-der-Pol attractors are often employed. There 
are numerous papers on this topic and this trend continues [14–16]. Noteworthy are 
also papers [17–18]. In [17] it is shown that slow increase in time of the parameters 
of the Duffing equation may bring to chaotic motion. In [18] the same effect is 
attained by varying the external force as a control parameter. 

In several papers chaotic behaviour of noisy structures (i.e., structures with 
random parameters) has been discussed. In many cases the computations were 
carried out for the Duffing equation or for its modifications [19–26]. We shall 
analyse these papers in Section 5. 

In the case of noisy systems, the question, which is the relationship between 
chaotic and random motion, arises. This problem was dealt with by Szemplińska-
Stupnicka [27], who wrote: “Can chaotic motion be interpreted as nonstationary 
free motion with randomly modulated amplitude and phase?”. We shall try to 
answer this question in Section 5. 

The main goal of this paper is to give an overview of the wavelet methods 
which can be used for analysing irregular, chaotic, and noisy motions; several 
numerical examples are presented. The paper is organized in the following way. 
In Section 2 the theoretical background of the wavelet method is briefly 
described. The decomposition technique is presented in Section 3. In Section 4 
some numerical characteristics of the motion are proposed. Section 5 is devoted 
to the analysis of noisy systems. Possibilities of the wavelet packet transforms 
are demonstrated in Section 6. In Section 7 the wavelet method is compared with 
the classical Fourier method and advantages and shortcomings of both 
approaches are discussed. For computing the examples and for plotting the 
diagrams, the Matlab and Mathcad wavelet toolboxes [28–29] have been used. 
 
 

2. THEORETICAL  BACKGROUND 
 

The function )(tgg =  is called a mother wavelet if the admissibility condition 
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where )(ˆ ωg  is the Fourier transform of ),(tg  is fulfilled. The wavelet family for 
)(tg  is defined as 
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Here a  is the scale (dilation) parameter and b  is the translation parameter. We 
shall consider only orthogonal wavelets, for which 
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Let )(tss =  be a time series (signal), for which 
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Here E  stands for the signal energy. 
The wavelet transform of )(ts  is 
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For the most of the wavelet families, a scaling function )(tϕ  is introduced; it 
is calculated with an iterative algorithm. If the scaling function is known, then 
using it the wavelet function )(tψ  can be put together (for details see, e.g., [1]). 
The formulae (1)–(5) hold if we take ϕ=g  or .ψ=g  

In the following we shall consider only dyadic scales for which ja 2=  and 
.kab =  Now the functions *ϕ  and *ψ  obtain the form 
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where Jj ...,,1=  denotes the level (order) of the transform. 
There are several wavelet families (e.g., Haar, Daubechies, Symmlet, and 

Bspline wavelets). In Fig. 1, the scaling function and mother wavelet for the 
Daubechies and Symmlet wavelets of order 8 are plotted. The type of the 
wavelet must be chosen so that it is consistent with the type of features present 
in the time series ).(tss =  Since in this paper mostly non-linear vibrations are 
examined, we have chosen the Symmlet wavelet, which is nearly symmetric. 

It follows from the wavelet theory that the signal )(tss =  can be expanded 
into the series 
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Fig. 1. Wavelets of order 8: (a) Daubechies wavelet; (b) Symmlet wavelet. 
 

 

where J  is the maximal level of resolution, kJa ,  and kjd ,  )...,,1( Jj =  are 
called wavelet transform coefficients. Due to the orthogonality of the scaling and 
wavelet functions, these coefficients can be calculated from the formulae 
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Introducing notations 
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we can put (7) into the form 
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This is the decomposition of the signal into orthogonal components. The 
function )(taJ  is the low-frequency component which is called approximation 
and functions )(td j  are called details of the level .j  In the signal processing 
theory the functions Ja  and jd  correspond to the low-pass and high-pass filter, 
respectively. 

Now let us calculate the signal energy .E  Taking into account the 
orthogonality of the scaling and wavelet functions, we find from (9)–(10): 
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where ,2
,∑= k kJa aE  ∑= k kjj dE .2

,  
Here aE  is the approximation energy and jE  is energy of the detail signal at 

the resolution level .j  
 
 

3. DECOMPOSITION 
 
For analysing the time–frequency properties of the signal, it is expedient to 

decompose the signal into many resolution components. In this section the 
decomposition is accomplished with the aid of the Matlab Wavelet Toolbox 
interface [28]. Quite important is the choice of the decomposition level .J  If J  is 
too big, we get unreasonable results; on the other hand, if J  is too small, the 
resolution of the signal will be insufficient. Maximal value of J  depends on the 
length of the signal and of the type of the chosen wavelet; it can be calculated 
using the command WMAXLEV in [28]. If the signal length is 512 and we use 
the Symmlet wavelet of degree 8, we find .5max =J  

In the case of the following examples, the signal is obtained by integrating 
differential equations. This is carried out with the fourth-order Runge–Kutta 
method with an accuracy of .10 6−  In this Section, from the solution achieved by 
integration, we have taken out 51229 =  points, which are uniformly distributed 
along the t  axis. 

As the first example let us consider the Duffing equation 
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with the initial conditions 
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In Fig. 2, the decomposition plot is presented for ,25.0=r  ,1=ω  .3.0=g  In 
this figure 5a  denotes the approximation at ,5=J  d5 – d1 are details for different 
decomposition levels. The original signal s  can be synthesized if we add all these 
terms: .123455 dddddas +++++=  It follows from Fig. 2 that the signal 
consists of several components (only the influence of 1d  can be neglected). 

Multilevel decomposition is especially valuable in the cases in which the 
nature of the external loading changes during the motion. As an example we 
shall consider the case in which ,15.0=r  ,1=ω  and 
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Fig. 2. Decomposition for the Duffing equation with ,25.0=r  ,1=ω  .512 Tti =  

 
 

Decomposition plots for this case are shown in Fig. 3. For 800 ≤≤ t  the 
motion is practically regular and the detail 3d  dominates. In the interval 

12080 << t  higher frequencies appear and the motion is assumed to be chaotic. 
For 200120 << t  only the components ,5a  ,5d  and 4d  are essential and the 
motion is quasiperiodic. 

In the next example we shall examine the chaotic Lorenz attractor: 
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Fig. 3. Decomposition for Duffing equation with ,15.0=r  ;1=ω  amplitude of the external loads 
is calculated according to (13). 
 

 
with initial conditions ,0)0( =x  ,1.0)0( =y  and .1.0)0( =z  Decomposition for 
the x  component is carried out for 28=r  and the results are plotted in Fig. 4. 
Here the details d3 – d1, which correspond to higher frequencies, are more 
important than in Figs. 2–3. 

There are also other possibilities for analysing the signal in the time–
frequency plane. One of them is to put together the mean square map [1], 
pp. 349–353. In the case of dyadic wavelets of order j  we have jjl 2)( =  
wavelet coefficients1 in the interval .],0[ Tt∈  Let us divide this interval into 

)( jl  boxes of uniform length; in the centers of the boxes we space the values 
,)]([ 2kd j  where ).(...,,2,1 jlk =  

A contour plot of these squares maps the distribution of the wavelet energy 
between different levels and different positions. Such a diagram for the 

                                                      
1  In some textbooks and also in the manual [28] downsampling has been used (passing to lower 

levels of decomposition every second data point is thrown away). In this case the number of 
wavelet coefficients )( jl  somewhat deviates from .2 j  
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x  component of the Lorenz attractor with 5.24=r  is plotted in Fig. 5 (for that 
purpose the program MAPDN from [1] has been applied). Of course the contour 
diagram can be replaced at will with a 3-dimensional plot. 
 
 

 
 

Fig. 4. Decomposition for Lorenz equation with ,28=r  .512 Tti =  

 
 

 
 

Fig. 5. Mean square map for the Lorenz equation with .5.24=r  
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The decomposition method gives an overview how the frequencies are 
distributed by levels and time. Its shortcoming is that in most cases the localiza-
tion in frequency is not satisfactory. Therefore it is sometimes difficult to find 
out visually whether the motion is quasiperiodic or chaotic. 

Some possibilities to overcome this difficulty we shall discuss in Sections 4 
and 6. 
 

 
4. SOME  NUMERICAL  CHARACTERISTICS 

 
In this section we shall consider some numerical characteristics which allow 

us to describe the main features of the signal ).(tss =  One possibility is to find 
out how the signal energy is distributed between the resolution levels. For this 
purpose the equations (11) may be used. It is expedient to introduce the relative 
wavelet energy 
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Another way is to calculate the Shannon entropy. Following [28], we define it as 
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The quantity S  measures the disorder of the system. As an illustration we shall 
apply (16) in a simple case in which only the first k  terms of the sequence }{ jp  
are different from zero. Let us find such values jp  for which the entropy is 
maximal. Here we have to solve the mathematical problem 
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Making use of the differential calculus we find kppp k 121 ==== K  and 
.lnmax kS =  We see that the system has maximal disorder if all the quantities jp  

are distributed uniformly. In the case of regular vibrations with the same 
frequency, we have 1=k  and .0max =S  If ,2=k  then 693.0max =S  and for 

3=k  we have .099.1max =S  
It can be seen from the decomposition diagrams, presented in Section 3, that 

in some cases the values of the functions are quite small and may be neglected. 
In this case the concept of threshold entropy, which is proposed in [28] (pages 6–
106) could be useful. Here a threshold value ε  is prescribed and a number of 
time instants, for which the function values are greater that ,ε  are evaluated. 

If the character of motion changes during the time ],,0[ Tt∈  then it is useful 
to analyse the time evolution of the wavelet energy and entropy. For this purpose 
we recommend the following procedure which is a modification of the method 
proposed in [30]. 
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Step 1: Calculate the wavelet coefficients for ].,0[ Tt∈  
Step 2: Compose the time–frequency map as shown in Section 3. 
Step 3: Divide the signal into non-overlapping temporal windows. To be 
concrete, in the following we shall consider the time window with the endpoints 

at  and .bt  
Step 4: Find out which of the wavelet coefficients belong to the interval .),( ba tt  
Summing up the squares of these components for the thj  decomposition we get 

.jE  
Step 5: Calculate jp  and S  for the given time window. 

Next we shall consider the case in which we have two different distributions 
}{ jp  and }{ jq  with ∑∑ ==

j jj j qp 1  (they can be considered as representing 
the distributions of the wavelet energy for two segments of a signal or two 
different signals). In [28] it is recommended to introduce the coefficient 
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which gives a measure of the degree of similarity between the two distributions. 
This quantity is always positive and vanishes only if jj qp ≡  for ....,,1 Jj =  

An interesting property of non-linear systems is selfsimilarity. A time series 
is called selfsimilar if the equation 
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holds statistically. Here 0>a  and H  is called the Hurst exponent. 
It can be shown [31] that for selfsimilar signals 
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This result can be written in the form 
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It follows from (19) that 
 

const.2log2log += Hjv j                                    (20) 
 

Next we shall make the diagram )log,( jvj  for ....,,2,1 Jj =  If the points of 
this plot lie near a straight line, then the motion can be considered selfsimilar. 
The slope of this line is ;2log2Hk =  thus the Hurst exponent H  can be 
calculated. 

This method has been applied by Scargle et al. [32]. As a shortcoming of this 
method Scargle notes: “... it is not particularly good at detecting periodic 
signals”. A similar method for calculating the Hurst exponent, which is called 
the rescaled range method, is presented in [33]; it is applicable for arbitrary time 
series. 
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There are several papers [34–35], in which statistical concepts (such as 
variance, bias kurtosis, etc.) have been used for analysing transient signals. In 
this paper the statistical approach is not considered. 

Let us consider some examples. We shall start with the Duffing equation (12) 
for ,1=ω  ,3.0=g  ;6=J  r  is the control parameter. The Shannon entropy and 
relative wavelet energies are plotted in Fig. 6. It follows from this diagram that 
the Shannon entropy has a jump at ;174.0=r  here period doubling takes place 
and the subsequent motion is irregular. For 174.0<r  the decomposition 5=j  
dominates, after that the role of lower frequencies increases. To illustrate this 
transition phenomenon, the time histories for three values of the control 
parameter r  are plotted in Fig. 7. 

Next, let us pass to the Lorenz system (14). Computer simulation results for 
the decomposition levels a6 and d6 – d1 are presented in Table 1. Symbol T  
denotes threshold entropy and is calculated in the following way. At first, we 
find the maximum of the signal maxx  and for each decomposition find the 
percentage of the values which are greater than .05.0 maxx  All calculations were 
carried out for the x  component (except the last row of the Table 1, where 
results for the z  component are shown). Time histories for some interesting 
cases are plotted in Fig. 8. 
 
 

 
 

Fig. 6. Duffing equation (12) for ,1=ω  ,3.0=g  .6=J  Dependence of the Shannon entropy S  
and relative wavelet energies 47 pp −  (in percents) on the parameter .r  
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Fig. 7. Time histories of the Duffing attractor for ,1=ω  :3.0=g  (a) ,17.0=r  (b) ,174.0=r  
(c) .18.0=r  
 

 
Table 1. Decomposition of the Lorenz system for different values of the control parameter r 

 

r  P/T 
6

a  
6

d  
5

d  
4

d  
3

d  
2

d  
1

d  S  

  22 p 96.7    0.9    0.7    0.6    0.6    0.6         0    0.200 
 T 100.0    13.5    7.4    2.8    5.6    8.8         0.2 

 
 

  24 p 94.4    0.9    0.6    0.5    1.0    2.4         0.1    0.297 
 T 100.0    13.4    7.3    2.8    12.8    55.7         0.59 

 
 

  24.5 p 37.6    10.2    8.0    15.6    18.0    9.8         0.9    1.670 
 T 86.8    65.3    51.6    56.0    69.1    75.9         19.1 

 
 

  28 p 25.5    5.3    12.6    20.4    23.4    11.4         1.4    1.7358 
 T 78.5    60.9    70.4    71.3    74.0    76.0         25.0 

 
 

  32 p 17.8    7.5    17.6    18.8    22.7    13.7         1.93    1.806 
 T 79.8    63.3    75.1    70.8    72.8    74.5         31.1 

 
 

166.3 p 0.2    0.3    2.9    27.2    39.0    28.0         2.5    1.3012 
x comp T 3.8    1.9    34.9    79.4    81.4    80.8         33.9 

 
 

166.3 p   93.5      0.9      0.5      0.3      2.2      1.8         0.2    0.346 
z comp T 100.0    13.4      5.1      5.9    69.2    64.5         32.6  

 
 

It follows from Table 1 and Fig. 8 that Shannon entropy has a jump between 
24=r  and 5.24=r  (here a limit cycle becomes instable). At 3.166=r  

solutions for the x  and z  component are completely different. Interesting is the 
behaviour of the z  component.  Low value of the  Shannon entropy  )346.0( =S   
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Fig. 8. Time histories of the Lorenz attractor: (a) ,24=r  (b) ,5.24=r  (c) 3.166=r  

x(  component), (d) 3.166=r  z(  component). 
 
 
and the fact that most of the wavelet energy belongs to the approximation a6 
indicates regularity in motion. On the other hand, the threshold entropy analysis 
shows high values for the decompositions d3 – d1 (which carry only an 
insignificant part of the wave energy). All this leads to chaotic outbreaks at 
irregular intervals. This phenomenon was described by Manneville and Pomeau 
[36] and is called intermittency. 

Szemplińska-Stupnicka [27] analysed the Duffing–Van-der-Pol equation 
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with the control parameter .υ  Her theoretical analysis showed that in the interval 
2.45.3 <<υ  the subharmonic frequencies 2υ  and 3υ  appear; in the transition 

zone the motion is chaotic. Let us discuss this problem using the wavelet 
method. Computer simulation results are shown in Table 2. The Shannon 
entropy has three maxima: 182.1=S  at ,82.3=υ  126.1=S  at ,09.4=υ  and 

122.1=S  at ,19.4=υ  which correspond to the transition frequencies. If υ  
increases, the maximal values of the wavelet energy move to lower decomposi-
tions. These conclusions completely confirm the results of [27]. 
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Table 2. Decomposition of the Duffing–Van-der-Pol system for different values of the parameter υ  
 

υ  
7

p  
6

p  
5

p  
4

p  
3

p  
2

p  S  

3.5 1.9 1.0 11.7 73.7 11.6 0.1 0.8534 
3.6 2.2 2.0 19.6 63.6 12.5 0.1 1.036 
3.7 1.7 2.7 21.8 60.5 13.2 0.2 1.083 
3.8 2.7 1.9 28.6 53.3 13.3 0.1 1.141 
3.9 2.1 2.0 29.3 50.8 15.6 0.1 1.164 
4.0 1.8 1.0 54.3 26.1 16.8 0.0 1.105 
4.1 1.4 1.4 51.9 29.6 15.7 0.1 1.119 
4.2 0.1 0.8 70.1 14.9 14.5 0.0 0.8570 

 
 
To illustrate time evolution of the method let us return to Fig. 4, where 

decomposition of the Duffing equation is plotted. Since the coefficient g  is 
prescribed according to (13), the motion consists of three different parts. Making 
use of the algorithm presented above, we have calculated the wavelet energies 
and Shannon entropy both for the whole signal and for its segments. The results 
are presented in Table 3. It follows from this table that most irregular is the 
motion in the interval ).200,120(∈t  

Next, let us give an example about the degree of similarity between two 
distributions. We shall consider the Lorenz equation (14) for 5.24=r  and 

.100=T  We shall compare here the segments ]50,0[∈t  and .]100,50[∈t  The 
Shannon entropy for these segments is 309.11 =S  and .796.12 =S  Applying the 
formula (17), we find .697.0)|( =qpS  Carrying out the same computations for 

28=r , we get ,633.11 =S  ,698.12 =S  and .243.0)|( =qpS  Consequently, the 
segments in the case 28=r  are more similar than for .5.24=r  If we compare 
the segments ]100,50[∈t  for 5.24=r  and for ,28=r  we find .111.0)|( =qpS  

The last example is about the selfsimilarity of the Duffing attractor for 
25.0=r  and .8=J  Making use of (20) we make the )log,( jvj  diagram, which 

is shown in Fig. 9a. Since all the calculated points are nearly on a straight line, 
the motion may be regarded as selfsimilar. The slope of this straight line is 0.136 
and the Hurst exponent is 0.226. 
 
 

Table 3. Wavelet energy and Shannon entropy for the Duffing attractor shown in Fig. 4 
 

Time interval 
7

p  
6

p  
5

p  
4

p  
3

p  
2

p  S  

    800 <≤ t    0.3 0.3 88.9   9.7 0.8 0.1 0.419 
  12080 <≤ t    6.4 1.5 35.6 50.9 5.3 0.3 1.126 

200120 ≤≤ t  21.0 9.3 48.7 19.8 0.9 0.1 1.270 
    2000 ≤≤ t    8.8 4.8 51.2 32.0 3.1 0.2 1.186 
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Fig. 9. Selfsimilarity of the Duffing attractor for 25.0=r  (a) and fractional Brownian motion (b). 

 
 

5. NOISY  SYSTEMS 
 
The first question which arises is how to distinguish chaotic motion from a 

stochastic signal. In the case of zero-mean Gaussian white noise, spectral density 
of the wavelet power, defined by (15), is independent of time and scale [37]. Thus 
if at all levels we encounter signals, which are clearly irregular, and higher 
frequencies carry most of the energy, the motion may be regarded as random. 

An important class among the random motions is the fractional Brownian 
motion. It is a selfsimilar motion with the Hurst exponent .10 << H  It can be 
shown [38] that the equation ,2 HD −=  where D  is the fractal dimension, 
holds. If ,5.0=H  we get the ordinary Brownian motion. 

The Hurst exponent can be calculated with the methods indicated in 
Section 4. As an example, let us analyse the fractional Brownian motion, which 
was calculated according to the method described in [29]. Decomposition of this 
motion gave the following results: ,1.218 =p  ,3.137 =p  ,5.176 =p  ,8.155 =p  

,4.74 =p  ,4.103 =p  ,4.82 =p  ;9.51 =p  the Shannon entropy was .868.0=S  
Making use of (20), we get the diagram shown in Fig. 9b; it shows that 

.55.0=H  
Behaviour of noisy systems (some parameters are random) is investigated in 

several textbooks (e.g., [39]) and papers. It is interesting to note that in several 
papers the stochastic Duffing oscillator has been investigated [20–25]. The 
randomness has been introduced in different ways. In [24] the forcing term of the 
equation (12) was taken in the form ),(cos)( ttgtF εξω +=  where )(tξ  is a zero 
mean unit Gaussian process and 0>ε  is a small parameter. In [22] the forcing 
term has the form ),(cos)1()( ttgtF γξωγ +−=  where .10 ≤≤ γ  In [20] it is 
assumed that )(tF  is a narrow-band stationary random process. The coefficient 
of the linear term x  is randomized in [21,23,25]. Wavelet method for analysing 
noisy systems has been applied in [26]. 

In these papers, computer simulation for calculating Ljapunov exponents, 
phase diagrams, and Poisson maps has been applied; also the Melnikov method 
was used. The main results are as follows. The random noise will change the 



 18

response of the system from a limit cycle to a diffused limit cycle. The Poincaré 
maps are diffused and smeared, they occupy larger area of the phase plane. 
Periodic windows of the largest Ljapunov exponent are gradually washed out or 
diminished. The value of the amplitude of periodic forcing for the onset of the 
chaotic motion is reduced with the increase of the noise intensity. If the 
deterministic system is regular, then noise may induce chaos. 

We shall investigate the Duffing attractor (12), assuming that the amplitude 
of the forcing term and angular velocity are functions of the narrow-band 
Gaussian random variables :)(tξ  

 

.)](1[)(

,)](1[)(

0

0

tt

tgtg

βξωω
αξ
+=
+=

                                        (21) 

 

Here ]1,0[, ∈βα  are prescribed coefficients, characterizing the noise 
intensity. We shall consider the case in which the motion for 0== βα  is 
chaotic. Computer results for 25.0=r  are plotted in Fig. 10 (it should be 
mentioned that the noise essentially increases the computing time; if we want to 
achieve the same precision as in the case of the deterministic system, then the 
computer time will be increased for 100–200 times). 
 
 

 
 
Fig. 10. Time histories of the Duffing equation for :25.0=r  (a) deterministic case; stohhastic 
cases: (b) ,0=α  ;05.0=β  (c) ,0=α  ;2.0=β  (d) ,05.0=α  ;0=β  (e) ,2.0=α  .0=β  
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Especially interesting are the cases b  and c  with 0≠β  (angular velocity is 
random). Here the chaotic motion with increasing t  becomes regular and is 
terminated in one of the focuses .1±=x  This conclusion is confirmed by 
decomposition analysis. For 2.0=β  we get ,8.927 =p  ,6.66 =p  ,5.05 =p  

,04 =p  285.0=S  (in the deterministic case we would have ,9.647 =p  
,4.166 =p  ,1.135 =p  ,8.54 =p  ).191.1=S  This is an interesting result and 

deserves further investigation. 
Summing up what was said above, we see that the effect of the noise to non-

linear vibrations is dual: it can induce chaos or it may smooth the motion and 
transmute it from the chaotic state to regular vibrations. This is also the answer 
to the question which was raised by Szemplińska-Stupnicka [27] and was 
formulated in Section 1. 

In the case of noisy systems the effect of the noise may be eliminated; for this 
purpose several denoising programs are available [28–29]. 

 
 

6. WAVELET  PACKETS 
 
Wavelet packet transform was introduced by Coifman and Wickerhauser [40] 

in early 1990s. Wavelet packet functions are superpositions of the wavelet 
functions, which are defined by the following sequence of functions: 
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Here )()(0 ttW ϕ=  is the scaling function and )()(1 ttW ψ=  is the wavelet 
function, )(kg  and )(kh  denote the coefficients of the scaling function and the 
wavelet, respectively. A three-indexed family of analysing functions is put 
together 

 

),2(2)( 2
,, ktWtW j

n

j

knj −= −−
                                   (23) 

 

where j  is the level of decomposition and k  is the position. The signal )(ts  is 
expanded in the following way 

 

,)()( ,,∑∑∑=
j n k

knjjnk twats                                   (24) 

 

where 
 

.d)()( ,,∫
+∞

∞−

= ttWtsa knjnjk                                       (25) 

 

To explain this method, let us consider the binary tree of the wavelet and 
wavelet packet transform (Fig. 11). In the case of the wavelet method, each 
approximation is  split into a  second-level  approximation and  detail  (Fig. 11a).  
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Fig. 11. Binary trees for the wavelet transform (a) and the wavelet packet transform (b);  
S  – signal, 

i
A  and 

i
D  denote approximations and decompositions, respectively. 

 
 
For a j-level decomposition there are 1+j  possible ways to decompose the 
signal. In the wavelet packet analysis, the details as well the approximations are 
split (Fig. 11b); this yields j2  different ways of decomposition. 

In the case of wavelet packet transforms we have more freedom to choose the 
basic functions than in the case of wavelets. We shall choose a basis which in the 
best way matches the characteristics of the signal. In [29] it is demonstrated that 
the best frequency resolution is achieved in the case of the Shannon entropy and 
for the local cosine transform (then the signal energy is concentrated just in a 
few waveforms). 

The wavelet packet transform has been applied for processing signals in 
several papers [41–42]. 

Usually the results obtained by the wavelet packet transform are interpreted 
in the time–frequency plane. A waveform is represented in this plane by a 
rectangle with its sides parallel to the time and frequency axes. According to the 
Heisenberg uncertainty inequality, the area of each rectangle must be smaller 
than π25.0  [41]. The amplitude of a waveform is encoded by darkening the 
rectangle in proportion to its waveform’s energy. For example, the best basic 
time–frequency diagram of the Lorenz attractor (14) for 5.24=r  is plotted in 
Fig. 12. For the decomposition level, 5=J  has been taken. By increasing this 
number, the width of the frequency bands is decreased and more precise 
estimation of the actual motion is achieved. 
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Fig. 12. Wavelet packet coefficients for the Lorenz equation (14), ,5.24=r  .5=J  
 
 

 
 

Fig. 13. Noisy vibrations described by the equation (26). 
 
 

The wavelet packets are especially useful if we want to distinguish chaotic 
and random motion. For illustration we shall consider the motion 

 

,
cos

sin
22 ω

ω
−

+=
k

tf
kty                                       (26) 

 

which is a solution of the differential equation .cos2 tfyky ω=+′′  Let us assume 
that ,2=k  ,1=f  and ω  is a narrow-banded random variable ),(1 tαξω +=  
where )(tξ  is a uniform zero-mean white noise (Fig. 13). The time–frequency 
diagram for 9=J  in the case of the best basis is plotted in Fig. 14. It follows from 
this diagram that dark or grey rectangles can be found practically in all frequency 
bands (in the case of chaotic motions the wave energy is distributed between a 
finite number of decompositions). 
 

 

7. CONCLUSIONS 
 

There is much similarity in the classical Fourier method and the wavelet 
method [43]. The main difference between these two approaches is that Fourier 
technique analyses the signal over the whole domain and is unable to characterize 
completely its local behaviour. The wavelet method is indispensable for analysing 
signals presenting fast local variations such as transients or abrupt changes. 

In this paper we tried to demonstrate that the wavelet technique is useful also 
for dedecting and exploring chaos in structural vibrations. 
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Fig. 14. Wavelet packet coefficients for the equation (26) when .9=J  
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Irregulaarsete  võnkumiste  ja  kaose  uurimine   
lainikute  abil 

 
Ülo Lepik 

 
Töö eesmärk on anda ülevaade lainikute rakendusvõimalustest irregulaarsete 

võnkumiste uurimisel. Selleks on kasutatud dekompositsiooni ning mitmeid 
numbrilisi karakteristikuid (energia jaotust erinevatel sagedustel, entroopiat, 
sarnasuse indeksit ja enesesarnasust). On analüüsitud müraga süsteemide käitu-
mist ning käsitletud lainikute pakette, mille abil saab vähendada sagedusriba 
laiust ja eristada kaootilisi võnkumisi stohhastilistest. 

 


