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Abstract. A parametrization technique, which has been introduced in the 1980s in the context of 
multilevel systems, is revisited. It is shown that a version of this optimization technique (which 
skips the introduction of co-states and the solution of the two-point boundary value problem) may 
be applicable in the numerical simulation of one-step ahead unconstrained model-predictive control 
strategies and other suboptimal real-time dynamic systems that use predicted closed-loop system 
trajectories. The representation is given in discrete-time setting using state-space models. 
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1. DESCRIPTION  OF  THE  PROBLEM

The past decades have witnessed a great success in the use of a variety of 
model-predictive control (MPC) methods [1–6]. The basic idea of MPC is to 
predict the controlled variables over a future horizon using a prediction model of 
the process, to calculate the controller outputs by minimizing an objective 
function, and finally to apply only the first control action. Since all optimizations 
involved in MPC are to be solved on-line at every sampling instant, they become 
the bottleneck when applying MPC methods to large-scale or rapid systems. To 
be more specific, there are three types of trajectories related to the minimization 
of a performance index. 

1. Projected desired trajectory (PDT) that starts from the actual value of the
process output and reaches the set point in a smooth manner. It is recalculated for 
each sampling period k  by solving a non-linear n-step n(  is relatively large) 
quadratic programming (QP) problem. The given set point may be time-varying. 
As a result of minimization of the sum of weighted square errors between the 
modelled output and given set points using (adaptable) process model equations, 
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the optimal (relative to stability, robustness, tracking, and other main properties 
of the system) PDT is calculated. As an illustration, the expression for finite 
horizon predicted cost is often used as a control Lyapunov function [1]. 

2. Driving desired trajectory (DDT) is produced in each sampling period by 
solving a n-step n(  is not large) QP problem using first values of the PDT. This 
trajectory, in fact, guides the process output to the PDT in the desired way since 
it corresponds to the realized control action, which is calculated using DDT and 
the model of the process. 

3. Measured process output trajectory (POT) approches the DDT, PDT, and 
the set point if the control system is stable and the used process model is 
sufficiently adequate. This trajectory is used for the analysis of the control 
quality and for the process model adaptation. Adaptation mechanism again 
includes the multistep QP algorithm. 

As an example, we consider the multivariable DDT problem for an 
unconstrained discrete-time linear system [5]. 

At each sampling instant k  find the control sequence kNkkkkk uuu ,1,1, ...,,, −++  
such that the specific cost function 
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is minimum subject to the state predictive model 
 

,...,,2,1   ,,1,1, NjBuAxx kjkkjkkjk =+= −+−++                         (2) 
 

where kjkx ,+  is the closed-loop state vector predicted at the instant k  for the 
instant ,jk +  kjku ,1−+  is the predicted control vector, and ref

,kjkx +  is the reference 
(PDTk) state; the matrices 0,0,, ≥> QRBA  and the initial state kkx ,  are given. 

The predictive model is updated at every sampling instant k  using the 
measured actual state which is used as initial value of the problem (1)–(2) for the 
next sampling period. 

The dynamic DDT problem is usually transformed into the static form and 
then solved directly [3,5,7]. Recently a number of approaches has been proposed to 
reduce computational requirements of MPC [6–8]. 

In this paper, for the same reason, we suggest a version of a direct optimiza-
tion scheme, which has been introduced in [9] and later applied to the Nash-
optimal set of subsystems [10]. The suggested scheme is directly applicable in the 
numerical simulation of unconstrained multivariable MPC systems, defined in 
the state space. The technique is restricted to linear and non-linear control objects 
for which the so-called influence matrix is known. The meaning of the influence 
matrix can be explained by a simple example. 

Consider a single-stage (static) optimization problem: 
 

),,(min uxJu  subject to .,,0),( mn RuRxuxf ∈∈=  
 

Assume that ),(ugx =  which means that 
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.uxug ∂∂=∂∂                                                 (3) 
 

From the stationarity condition 
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and the differential of the equality constraint 
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we can state that if J  is convex, uf ∂∂  exists, and xf ∂∂  is nonsingular, then 
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The term ug ∂∂  in (3) is named the influence matrix [9]. If this matrix is control-
independent, we can solve the problem directly. 

 
 

2. MAIN  PROBLEM.  OPTIMIZATION  OF  DISCRETE-TIME  
SYSTEMS  USING  PERFORMANCE  CRITERIA  PARTITION 

 
In the multistage (dynamic) case we can apply the single-stage optimization 

approach (3)–(6) using the performance criterion partition. 
Consider again the multivariable DDT problem (1)–(2), in which the 

controlled object is now non-linear. For the simplification of the expressions 
assume also that the reference level is constantly zero ).0( ref =x  Then 
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and 
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Here, in discrete-time setting, we use the same partial differentiation notation. 
The optimal control law must satisfy the stationarity condition 
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In [9,10] it is shown that if the influence matrix is control-independent then the 
condition (9) can be satisfied and the problem (7)–(8) iteratively solved without 
introducing co-states. 
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2.1. Solution  procedure 
 
The performance index is partitioned ,kk JJJ +=  and the second term of the 

stationarity condition 
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is parametrized, i.e., 
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There are several possible ways of partition. For the stated control problem 
the natural choice would be: 
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The condition for optimality at the stage k  is 
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Now instead of the N-stage problem we must solve a sequence of modified static 
problems (3)–(6). 

If the influence matrix is independent of the control, i.e., 
 

,)(),(),,( kkkkk uxDkxgkuxf +=                                (16) 

where 
 

),(1 kkk xDux =∂∂ +                                            (17) 
 

then the condition for optimality at stage k  gives 
 

).),()(()( 1
kkkkk kxQgxDxMu ρ+′= −                         (18) 

 

The function ),( kxg k  represents that part of ),,,( kuxf kk  which depends 
only on ;kx  nonconstant matrices )( kxM  and )( kxD  are obtained when 
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substituting ),,,( kuxf kk  into the relation (14). The procedure of obtaining 
Eq. (18) is transparent in the case in which the non-linear object is linear with 
respect to the control: 

 

.),(),,( kkkk Bukxkuxf +=ϕ                                 (19) 
 

For the problem (12), (19), the partially closed-loop control law is obtained 
directly: 

 

).),((][ 1
kkk kxQBRQBBu ρϕ +′+′−= −                            (20) 

 

In the case of a linear object, the term ),( kxkϕ  is replaced by .kAx  
It is natural that the controller is also partitioned. The first part represents a 

one-stage ahead control law in feedback form. The second, feed-forward term, 
represents open-loop control, which takes into consideration the influence of the 
remained control horizon. 

For the exposed partition (12), the vector kρ  is calculated sequentially, 
backward in time, along the closed-loop system trajectory :)(

~
1 kk xfx =+  
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The inner structure of the recursion (22) can be easily explained on the 
example of a linear object. It is supposed that the trajectory )(

~
1 kk xfx =+  under 

the controls (18) is stable and unique. 
 

2.2. Solution  algorithm 
 
1. Take 0=kρ  and find sequentially, using (18) and (8), the controls ku  

together with the closed-loop trajectory ),(
~

1 kk xfx =+  .1,,2,1,0 −= Nk K  
2. Find the value of kρ  along the closed-loop trajectory (21)–(22). 
3. Substitute kρ  into the equation for ),20(ku  find ),(

~
1 kk xfx =+  and repeat 

step 2. 
It is assumed that this simple iteration (steps 2 and 3) converges at least for 

closed-loop systems, which are stable at .0=kρ  Numerical simulation supports 
this assumption. To improve the convergence, at each iteration c  the calculated 
value of the coordination term kρ  can be relaxed, i.e, 
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where Ω  is the so-called relaxation matrix. 
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According to the MPC scheme, the final value of 0u  is implemented and the 
measured real state is taken as the basis for the next solution of the problem (7)–
(8). 

 
2.3. Application  domain 

 
The algorithm described is directly applicable to several numerical simulation 

problems of MPC stated in state space and discrete time in the following cases: 
– linear system; 
– non-linear system, which is linear with respect to the controls (19); 
– non-linear system, in which the influence matrix is independent of the control 
(16); 
– Nash-optimal linear system [10], defined on the set of m  interconnected 
subsystems: 
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performance indices jJ  may also contain the controls of other subsystems, 
which will lead to interesting algorithms of incentive control [11]; 
– variants generated by suitable partition of performance criteria; for example, 
we can separate the performance index (7) so that 
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.kk JJJ −=                                                 (26) 
 

Now, in the case in which the influence matrix is independent of the control 
(16), this partition simplifies calculations since inversion of the non-constant 
matrix )( kxM  is avoided. The expression for coordination term in this case is 
also slightly modified [9]. 

 
 

3. NUMERICAL  SIMULATION  OF  THE  SOLUTION  PROCEDURE 
 
Consider the problem (7)–(8) with the partition (13) to which the steps 2 and 3 

of the solution algorithm are c  times applied. Simple comparison of the final 
value of the performance index after each iteration illustrates to some extent the 
convergence process. 

Let us take a simple scalar linear system 
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,1...,,1,0  ,1 −=+=+ Nkbuaxx kkk                              (27) 
 

and a non-linear system 
 

,1...,,1,0  ,2
1 −=+=+ Nkbuaxx kkk                                (28) 

 

with positive initial state value .0x  
The performance index for both systems is the same: 
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Simulation procedure has been carried out for different values of the para-
meters and state transitions. One version of both, of the linear and the non-linear 
system together with the obtained values of the performance index cJ  after c  
iterations are presented in Tables 1 and 2, where ω  is the relaxation parameter. 

As it was to be expected, for a stable object the process converges rapidly. For 
unstable objects and stabilized closed-loop systems, the convergence decreases 
with the increase of the state transition .a  The reduction of the relaxation 
parameter ω  (Table 1, row 6 and Table 2, row 5) supresses oscillations and 
restores rapid convergence. 

 
 

Table 1. Simulation results of the linear system for ,500 =x  ,0.1=q  ,0.1=r  ,0.1=b  15=N  
 

ω   a  
1

J  
2

J  5
J  

10
J  

20
J  

1.0 0.8 634   577 576 576 576 
1.0 1.0 834   777 776 773 773 
1.0 1.1 907   865 862 860 860 
1.0 1.2 960   933 942 935 933 
1.0 1.3 993 1051 992 998 995 
0.5 1.3 993   998 996 996 995 

 
 

Table 2. Simulation results of the non-linear system for ,100 =x  ,0.1=q  ,0.1=r  ,0.1=b  
15=N  

 
ω   a  

1
J  

2
J  5

J  
10

J  
20

J  

1.0 0.08   32.82   32.75   32.75   32.75   32.75 
1.0 0.10   53.14   52.62   52.55   52.55   52.55 
1.0 0.12   81.49   79.87   78.56   78.52   78.52 
1.0 0.15 151.70 179.43 149.83 173.47 149.56 
0.5 0.15 151.70 134.45 131.06 131.06 131.06 
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4. CONCLUDING  REMARKS 
 

Model-predictive control has become an accepted standard for many control 
problems in industry. Its serious drawback is the relatively large amount of on-line 
computations, which limit the applicability to relatively slow or small problems. 
In this paper, a version of the parametric optimization technique is suggested 
which can find an application in real-time simulation of several modifications of 
MPC strategies, based on predicted closed-loop system trajectories. 

The technique is quite flexible. It may yield linear or non-linear partial feed-
back laws, depending on the type of non-linearities, on the nature of influence 
matrix, and on the chosen decomposition of the performance index. Also, the 
used state-space representation is well suited for complex multivariable systems. 
Among others, the Nash-optimal set of subsystems and some schemes of 
incentive control can be successfully treated. 

The optimization technique is not very demanding since it does not explicitly 
introduce the co-state vector to derive the stationarity conditions to be satisfied 
by the controls. Instead, the resulting equations are solved iteratively by means of 
parametrization. The calculated controls are treated as suboptimal and are 
implementable at any iteration step. 
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Optimeerimistehnika  kasutamine  ennustava  juhtimise  
modelleerimisel 

 
Ingmar Randvee 

 
Esitatakse ennustava juhtimise algoritmis sisalduvate optimeerimisülesannete 

lahendamise tehnika. See baseerub sihifunktsiooni dekomponeerimisel, mille 
tulemusel saadakse osaliselt tagasisidestatud regulaator. Regulaatori avatud ahe-
laga juhttoime komponenti täpsustatakse iteratiivselt, kasutades sihifunktsiooni 
parametriseerimist. Tehnika on rakendatav nii lineaarsete kui ka eralduvate muu-
tujatega mittelineaarsete objektide puhul ning see on oluliselt lihtsam klassika-
lisest lahendusskeemist, kuna ei nõua kaasmuutujatega rajaülesannete lahenda-
mist. See asjaolu võimaldab kasutada ennustavat juhtimist ka keerukamate 
objektide, sealhulgas mitme lokaalse regulaatoriga Nash-optimaalsete süsteemide 
korral. 

 
 


