
5

Proc. Estonian Acad. Sci. Eng., 2001, 7, 1, 5–21

AGENT-BASED SOFTWARE DESIGN

Margus OJAa, Boris TAMMb, and Kuldar TAVETERc

a Department of Informatics, Tallinn Technical University, Ehitajate tee 5, 19086 Tallinn, Estonia;
margus.oja@radiolinja.fi

b Cybernetica Ltd, Akadeemia tee 21, 12618 Tallinn, Estonia; btamm@is.cyber.ee
c VTT Information Technology, Tekniikantie 4B, Espoo, Finland; kuldar.taveter@vtt.fi

Received 23 November 2000

Abstract. This paper introduces an agent-based software development method. It defines a limited
number of components of an agent-based software system and shows the possibility of designing
and implementing actual software. Starting points in developing agent-based software are the
business rules and the basic agent-based concepts as defined in the paper. A notation for visualizing
the defined concepts is introduced. The notation of the unified modelling language UML is used.
The possibility to define rules for mapping agent model elements onto source code is shown using
the JADE agent platform.

Key words: software agents, software design, software engineering, UML, JADE.

1. INTRODUCTION

Several efforts have been made to develop agent-based software methodologies
[1,2]. However, most of the studies concentrate on specific areas of the agent
software – agent models, reasoning logic and agent actions, agent communication,
agent programming languages and frameworks. To gain wide acceptance of agent-
based software in practice, methods covering the full software development cycle
from analysis to implementation are required. Such methods can be developed on
the basis of agreed agent software concepts, modelling techniques supporting these
concepts, and finally agent software implementation frameworks supporting the
same concepts.

We are going to present a method covering all these stages. The aim of the
paper is not to introduce a fully functional agent-based method but rather to show
that it is possible to develop one.

https://doi.org/10.3176/eng.2001.1.02

https://doi.org/10.3176/eng.2001.1.02

6

2. SCOPE OF AGENTS, BACKGROUND, RELATED WORK

In the present work the word agent will be used in the meaning of an
abstraction unit when designing and implementing software systems. Starting to
design new software, the initial specification should describe what kinds of agents
can be found in the system and how do they co-operate with each other in order to
offer the needed functionality. When it comes to the design and implementation of
the specified agents themselves, then traditional object-oriented programming
languages must be used.

Agent-based approach is not applicable everywhere – it can be used only in the
circumstances where software system will be built of autonomous units, each
executed separately. The restriction is quite natural – like simple procedural
approach is the best for designing simple software for calculating square root or
like object-oriented approach is the best for designing complex software working
as one unit.

Agents add value to the traditional software design by offering tools for
handling the most general level of the problem domain. They represent the main
building blocks of a distributed software system without describing the internal
structure of the individual blocks.

According to Nwana [3] the concept of agent dates back to the early days of
research into DAI in the 1970s, to Carl Hewitt’s concurrent actor model (1977)
where “...an actor is a computational agent which has a mail address and
behaviour. Actors communicate by message passing and carry out their actions
concurrently”. Nwana states that the overuse of the word agent has masked the fact
that, in reality, there is a truly heterogeneous body of research carried out in this
manner. Nwana even states that the chance of agreeing on a consensus definition
for the word agent is nil. He makes an effort to classify different types of existing
software agents according to the abilities to learn, co-operate, act autonomously,
and comes up with the following classification: collaborative agents, interface
agents, collaborative learning agents, and smart agents (Fig. 1). Nwana admits also
that there exist other ways of agent classification. This paper is using the word
agent in the meaning of collaborative agent according to the above classification.
Collaborative agents emphasize autonomy and co-operation.

In order to co-operate, agents need a communication language. Wagner refers to
an informal definition of software agent by Genesereth and Ketchpel in his book [4]
as follows: “An entity is a software agent if and only if it communicates correctly
in an agent communication language (ACL)”. Knowledge Query and Manipulation
Language (KQML) [5] is the most widely used ACL. Java Agent Development
(JADE) framework [6] uses the ACL [7], specified by the Foundation for Intelligent
Physical Agents (FIPA), that is very similar to KQML. An overview of JADE will
be presented later in this paper. FIPA is a non-profit association whose purpose is
to promote the success of emerging agent-based applications, services, and equip-
ment. FIPA has published a set of specifications for agent-based software
development frame-works. Some of the normative specifications by FIPA are:
Agent Management, ACL, and Agent Software Integration [7].

7

Co-operative Learn

Autonomous

Collaborative agents
Interface agents

Smart agents

Collaborative
learning agents

Fig. 1. Agent classification according to Nwana [3].

Taveter and Tamm [8] have introduced layered architecture of agent-based
software where the software is considered as consisting of three layers: agent,
object, and binary layer (Fig. 2). Similar approach is also followed in this paper.
We regard agents as the top-level abstraction units in software design while the
agents themselves are implemented using object-oriented programming
languages. We accept also objects in the top agent layer, but these are the objects
that agents manipulate with and not the implementation level objects. We do not
accept any object-to-object communication in the agent layer. The computers
will finally execute only the compiled binary code regardless of the high level
languages used by humans. The first two levels are meant for humans and should
make software developing easier, faster, and more reliable. Adding a new agent
layer on top of the object layer will be justified only if it adds value compared to
the object-oriented approach. The added value is achieved by scoping agents
a) to distributed systems consisting of separate autonomous software units and
b) to general level where common sense is sufficient to model the software
system without going into any technical details.

Agent layer

Object layer

Binary layer

Analysis & Design, model

Implementation, source code

Execution, binary code

CASE tools, mapping rules

Compilers

Fig. 2. Triple layer agent software architecture.

8

A related paper [1] states the following: “Gaining wide acceptance for the use
of agents in industry requires both relating it to the nearest antecedent technology
(object-oriented software development) and using artifacts to support the
development environment throughout the full system lifecycle”. This statement
matches well with our approach where we introduce a full development cycle
from modelling agent software to the actual implementation. However, most of
the work [1] deals with agent interaction protocols and shows the possibilities of
using different UML diagrams for modelling agent interactions. The starting
points are UML and object-oriented approach. Agents are presented as an
extension of active objects, exhibiting both dynamic autonomy (the ability to
initiate action without external invocation) and deterministic autonomy (the
ability to refuse or modify an external request). The scopes and aims of the work
[1] and of the present paper are different. The first covers only visual modelling
based on UML. It does not define the components of agent-based software and it
does not propose any methods for implementing a visual model in software.

Another related work [2] concentrates similarly to [1] on adjusting UML visual
diagrams to agents but lacks also a clear definition of concepts. The paper is
UML-driven and maps concepts from notations in diagrams onto the metamodel
(defined for object-oriented concepts in UML!). The mapping onto metamodel is
questionable – how can we map agent-based concepts onto the metamodel
elements based on object-oriented concepts?

The present paper first defines the concepts of an agent-based software system
as a starting point, then introduces visual notation for representing these
concepts, and finally shows that it is possible to define rules for mapping the
visual model onto the actual program code. UML is not used as a starting point; it
is used rather as an aiding tool in visualizing the defined concepts.

3. CONCEPTS AND VISUAL NOTATION

In the following paragraphs the main concepts of an agent-based software

model are outlined. We shall specify a limited list of components of agent-based
software. There is evidently a need for more components (like actors, virtual
knowledge base, state, transition, case studies, etc.) but this is out of the scope of
this paper. We shall explain the meanings (brief semantics) of selected components
and introduce the notation of the components on diagrams. After that we shall
introduce mapping rules from the visual model onto actual software code. JADE
framework will be used in the code examples. Note that there is a difference
between the code, generated according to the mapping rules, and the final fully
functional code. The generated code serves as a frame and that must be manually
modified in order to become fully functional. Not every detail should be present in
the model. Unfortunately, there are no strict rules about what to include in the
visual model and what should be added only to the code. Similar statement can be
found also in the UML Summary [9]: “The UML, a visual modelling language, is
not intended to be a visual programming language”.

9

Business rules [10] are a set of constraints and directions. The rules define
how can we get what is needed. Business rules can be applied to the behaviour of
a single agent and also to the co-operation of a group of agents. The business
rules are visualized by diagrams; there is no visual notation for a business rule
because it is not an independent component in our approach. Rather the rules will
be used in a model as the glue between the components – they define the
presentation of the components in diagrams.

An agent is an autonomous software unit that can exist independently of other
similar units in the software system. An agent performs some functions for other
agents or external actors. Agents communicate with each other via messages in
an agent communication language. It is interesting to compare this definition
with the FIPA agent definition [7]: “An agent is the fundamental actor in a
domain. It combines one or more service capabilities into a unified and integrated
execution model which can include access to external software, human users and
communication facilities”. The main difference is that in our approach we
emphasize the software nature of an agent and the communication between
agents. An agent is expressed on diagrams as a dashed rectangle (Fig. 3). The
rectangle can contain only the name of an agent because in our approach an agent
does not have any internal structure. There are two reasons for using dashed
rectangles for agent notation: a) to distinguish an agent from an object and b) an
agent can be in the role of a system boundary in used case diagrams and in UML
this is denoted with dashed lined rectangle.

A message is a speech act that one agent performs in order to request or send
information to other agent(s) in the format of an ACL. Note that UML defines
message from a different viewpoint [11], putting emphasis on the general-to-
specific relationship: “A message instance is a communication between objects

%X\HU 6HOOHU

$GYHUWLVH QHZ PRGHO RI 9HFWUD

5HTXHVW SULFH IRU QHZ PRGHO RI 9HFWUD
�UHSO\�ZLWK 9HFWUD SULFH RIIHU

,QIRUP ��� ���
�LQ�UHSO\�WR 9HFWUD SULFH RIIHU

$VN IRU SULFH RIIHU IRU WKH QHZ PRGHO RI
9HFWUD

3ULFH RIIHU ��� ���

)UHH�IRUP
GHVFULSWLRQ

$JHQW FRPPXQLFDWLRQ
ODQJXDJH V\QWD[

Fig. 3. Agent, message, and behaviour notations.

10

that conveys information with the expectation that action will ensure. A message
is the description of a set of message instances of the same form”. Messages are
sent asynchronously; an agent can have multiple conversations at the same time
and can receive different messages from different agents with no particular order.
A message is depicted as a labelled arrow (Fig. 3). The label contains the
message description and the arrowhead direction defines the sender and the
receiver. The message label string can have two different forms (both at the same
time) – a free form description and a form that accords to the syntax of the ACL
used in the system. The free form description should be used for discussing the
model with people not familiar with the ACL. The language specific syntax
should be used for easier migration from the model to the actual software code.

A behaviour is a sequence of agent’s actions performed as a result of a
specific event. Actions in our approach can be sending of messages, waiting for
incoming messages, internal actions, and object manipulations. An event can be
receiving a message or a specific return value of some periodical test procedure
(timeout, end of day, etc.). Note that UML and FIPA do not define the term
behaviour. The closest concept in UML is activation. Behaviour is depicted on
sequence diagrams by grouping an agent’s actions with a rectangle area on the
agent’s lifeline (Fig. 3). A single diagram can express multiple behaviours of an
agent.

An internal action is an activity or a group of
sequential activities of an agent. Internal action is not
related to any objects manipulated by the agent or to any
messages sent or received. An internal action is depicted
as a labelled arrow directing back to the agent’s lifeline
(Fig. 4). The label contains a free form description of the
action. An internal action should not be mixed with a
message even if they look visually the same – an agent
does not send messages to itself. It is possible for an
agent to send a message to itself but it just does not make
sense.

An object is a passive component in the system that is manipulated directly
by an agent. An agent’s virtual knowledge base consists of the information tied to
objects. Examples of objects in our approach are bill, schedule, switch, etc. An
agent can manipulate an object in order to get or change some information or to
perform some action with the object like, for example, deletion. An object is
depicted as a rectangle with a name (Fig. 5).

We define the communication between an agent and an object as a
manipulation. An agent communicates with objects not in ACL but in the form
corresponding to the object. For example, if an object is a row in a relational
database table then the agent should use the SQL commands specific to the
database for manipulation. In our approach we do not allow any communication
between objects. A manipulation is expressed as a labelled arrow (Fig. 5). The
arrow is directed from the agent to the object being manipulated with and the

6HOOHU

&DOFXODWH
QHZ SULFH

 Fig. 4. Notation of the
 internal action.

11

%X\HU 6HOOHU

$GYHUWLVH QHZ PRGHO RI 9HFWUD

$VN IRU SULFH RIIHU IRU WKH QHZ PRGHO RI
9HFWUD

3ULFH RIIHU ��� ���

4XRWDWLRQ 3ULFH OLVW

/RRN XS WKH FXUUHQW SULFH

0DNH QHZ TXRWDWLRQ

Manipulations

Objects

Fig. 5. Object and manipulation notation.

label contains the manipulation description. Note that a manipulation is denoted
with an arrow exactly ike a message, the difference is defined by the receiver.
The manipulation labels can have two different forms (both simultaneously like
message labels) – a free form description as shown in Fig. 5 and with the formal
syntax of the programming language used during implementation. The UML
notation can also be used for expressing the formal syntax [11].

Now, having defined all the needed concepts let’s look how we can tie them
together in a visual model using business rules. A business rule can be visualized
using one or more behavioural diagrams matching the rule best. UML defines a
set of behavioural diagrams [9]: statechart, activity, sequence, and collaboration
diagrams. The same rule can be expressed on different diagrams and one diagram
can visualize several rules. Different diagrams emphasize visually different
aspects of a rule. We are going to use only the sequence diagrams to keep the
scope in reasonable limits. Figure 6 contains the visual representation of sample
business rules about the lifecycle of a sales quotation:

– A salesperson prepares a new quotation draft.
– Only quotations satisfying the customer’s requirements are presented to the

customer.
– A customer can accept or reject a presented quotation.
– Quotations not presented to a customer are archived as drafts.

12

6DOHVSHUVRQ

Prepare draft

&XVWRPHU

>&XVWRPHU UHTXLUHPHQWV VDWLVILHG@
SUHVHQW TXRWDWLRQ

>&XVWRPHU UHTXLUHPHQWV
QRW VDWLVILHG@ GHOHWH

$FFHSW TXRWDWLRQ

4XRWDWLRQ

$FFHSWHG

5HMHFW TXRWDWLRQ

5HMHFWHG

3UHVHQWHG

Fig. 6. Visual representation of sample business rules in the case of a sales quotation handling.

4. MAPPING MODEL CONCEPTS ONTO SOURCE CODE

In this section we show that it is possible to define rules for generating the

actual program code on the basis of a visual model. Generation of the program
code is based on mapping rules from the modelling language concepts onto parts
of the program code. We use JADE as the target source code platform. The
introduced rules apply only in the JADE environment. Some of the rules are of a
more general nature, some are Java language specific and some JADE specific.
We are not going to classify the rules in this paper.

The generated code is compilable but it still needs manual additions to make it
fully functional. Places where programmer should (or could) add an additional
code are marked with comments to do. The generated code can be executed and
the messages sent between agents can be visualized using the Sniffer agent
provided by JADE. In the source code examples below we are using emphasized
text for names that are generated from different names or texts used in the visual
model. We are using CAPITAL letters to highlight the beginning of mapping
definitions of a previously defined concept.

JADE is a software development and runtime framework fully implemented
in Java language. It simplifies the implementation of multi-agent systems through
a middleware that claims to comply with the FIPA specifications and through a
set of tools that support the debugging and deployment phase. The agent platform
can be distributed between machines (which do not even need to share the same
OS) and the configuration can be controlled via a remote graphic user interface.
JADE is completely implemented in Java language and the only system
requirement is the version 1.2 of JAVA (the run time environment or the JDK).

13

JADE is implementing agent behaviours using behaviour classes. A non pre-
emptive multitasking of executing different behaviours of an agent has been
implemented for JADE.

An AGENT in a visual model is implemented as a subclass of Agent with one
predefined behaviour named MessageHandler. Both classes are included in a new
package named after the agent. Below are the exact rules for generating JADE
code for an agent:

– The name of the agent class is the name of the agent in the visual model.
– The name of the new package is also named after the agent. The package

contains the agent class, it’s behaviour classes, and classes for objects
manipulated by the agent.

– Two JADE standard member functions “setup()” and “takeDown()” are
included for adding manually application specific start-up and clean-up codes.

– The predefined behaviour MessageHandler is started by “setup()”.
A code, generated using these rules, is shown below.

The reason for introducing a predefined MessageHandler class is the need for

implementing agent feature to respond to different messages from different
agents. The task of the MessageHandler is to listen to incoming messages and
forward all the received messages to appropriate behaviours. Exact rules for
generating JADE code for MessageHandler class are the following:

– The class MessageHandler is derived from JADE class CyclicBehaviour and
will therefore run continuously.

– If no messages have arrived, the behaviour will block and restart after a new
message has arrived.

package agentName;

import jade.core.*;

/**
 * to do: description of the agent for the javadoc tool.
 */
public class AgentName extends Agent {

 protected void setup() {
 // to do: add necessary start-up code

 addBehaviour(new MessageHandler(this));
 }

 protected void takeDown() {
 // to do: add necessary clean-up code

 }
}

14

– If a message has arrived, the MessageHandler has to check the message
information, start corresponding behaviour of the agent and resume waiting for
incoming messages. Checking the message and starting another behaviour are
described afterwards as rules for mapping a message onto the program code.

A code, generated using these rules, is shown below.

A BEHAVIOUR is implemented as a subclass of JADE OneShotBehaviour
class. A MESSAGE is mapped in JADE onto the code of behaviours of both
sending and receiving agents. Exact mapping of an incoming message depends
on whether the message is the first message of the behaviour in a diagram or
there are other messages included in the behaviour before. The rules of
generating JADE code are as follows:

– If the first message of a behaviour is an incoming message then this
message is considered as the trigger to start the behaviour. Start-up of the
behaviour is implemented in the code of the MessageHandler. The message is
passed as a parameter to the constructor of the behaviour class.

– If an incoming message is not the first message of a behaviour, then the
receiving of the message is implemented in the behaviour class code and not in
the MessageHandler.

package agentName;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

/**
 * Predefined incoming message handler
 */
class MessageHandler extends CyclicBehaviour {

 /** constructor of the behaviour */
 public MessageHandler(Agent a) {
 super(a);
 }

 /** actual implementation of the behaviour */
 public void action() {

 // wait for a message
 ACLMessage received = myAgent.receive();
 if (received == null) {
 block();
 }
 else {

 // check message information to
 // start corresponding behaviour of the agent
 }
 }
}

15

– Sending of messages is always implemented in the behaviour class of the
sending agent.

– The behaviour class will be in the same package with the agent.
– The behaviour class is named after the first message.
– Sending and receiving of messages and performing internal actions are

implemented in the same sequence as shown in sequence diagrams.
The code below makes no assumption if the first message is incoming or

outgoing. It shows the code generated according to common rules in both cases.
Code, generated on the basis of the message specific rules, is shown afterwards.

An outgoing message is implemented as a part of the code in the “action()”

method of the behaviour. If the ACL syntax is provided in the model then the
new message of the defined type and with defined parameters is created in the
code. If ACL syntax is not provided, the new message is of type UNKNOWN.
Message parameters are set as follows:

– Receiver agent’s name is specified in lower case letters. This is due to the
JADE feature that during registration the agent name is converted to lower case.

– Sender agent’s name is set automatically by JADE and no additional code is
needed.

– The conversation ID of the message is set to the diagram title.
– If the message description does not have ACL syntax then the whole free

form description is regarded as the content. Otherwise the actual content value
from the description in the diagram is set as content of the message in program
code.

package agentName;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

/**
 * to do: description of the behaviour for the javadoc tool.
 */
class MessageFreeFormDescription extends OneShotBehaviour {

 /** constructor of the behaviour */
 public MessageFreeFormDescription(Agent a) {
 super(a);
 }

 /** actual implementation of the behaviour */
 public void action() {
 // to do: add message handling code

 }
}

16

– The content must be enclosed with parenthesis due to JADE framework
feature.

– Other optional parameters are assigned according to the ACL syntax
description.

Below is an example of the source code of an agent’s behaviour by sending a
message. The part of the code, generated according to the rules presented above,
is highlighted.

package agentName;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

/**
 * to do: description of the behaviour for the javadoc tool.
 */
class MessageFreeFormDescription extends OneShotBehaviour {

 /** constructor of the behaviour */
 public MessageFreeFormDescription(Agent a) {
 super(a);
 }

 /** actual implementation of the behaviour */
 public void action() {
 // to do: add message handling code

 // message free form description
 CLMessage send = new ACLMessage(ACLMessage.MESSAGETYPE);
 send.addDest("receiveragentname");
 send.setConversationId("Dialog_Title");
 send.setContent("(content from the label)");
 myAgent.send(send);

 }
}

If start of the agent’s behaviour is triggered by an incoming message then the

message is implemented by parts of the code in the predefined behaviour
MessageHandler and by parts of the code in the behaviour class. The rules are the
following:

– Class MessageHandler checks the incoming message using the message
type and all available parameter values from the model. If the incoming message
passes the check then the behaviour is started using method “addBehaviour()” of
the agent class.

– In the behaviour class (subclass of OneShotBehaviour) a private member
variable “received” of type ACLMessage is defined. The incoming message is
assigned to the variable in the constructor.

17

Below is an example of the source code of the agent’s behaviour started by
receiving a message. The parts of the code, generated according to the incoming
message rules, are highlighted.

package agentName;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

/**
 * to do: description of the behaviour for the javadoc tool.
 */
class MessageFreeFormDescription extends OneShotBehaviour {

 // placeholder for the received message
 private ACLMessage received;

 /** constructor of the behaviour */

 public MessageFreeFormDescription(Agent a, ACLMessage msg) {
 super(a);
 received = msg;

 }

 /** actual implementation of the behaviour */
 public void action() {
 // to do: add message handling code

 }
}

/**
 * Predefined incoming message handler
 */
class MessageHandler extends CyclicBehaviour {

 /** constructor of the behaviour */
 public MessageHandler(Agent a) {
 super(a);
 }

 /** actual implementation of the behaviour */
 public void action() {

 // wait for a message
 ACLMessage received = myAgent.receive();
 if (received == null) {
 block();
 }
 else {

 // check message information to
 // start corresponding behaviour of the agent

18

 if (received.getPerformative() == ACLMessage.MESSAGETYPE &&
 received.getSource().equals("senderagentname") &&
 received.getConversationId().equals("Dialog_Title") &&
 received.getContent().equals("(content from the label)")) {
 myAgent.addBehaviour (new MessageFreeFormDescription
(myAgent, received));
 }

 }
 }
}

Incoming message – inside a behaviour. If an incoming message is not the

first message of a behaviour then receiving of the message is implemented as part
of the code of the behaviour method “action()”. The rules are the following:

– A variable “received” of type ACLMessage is defined in the method
“action()” of the behaviour class.

– Method “blockingReceive()” of the class Agent is used to wait for incoming
message.

– The free form description of the message is used as source code comment
for better readability of the generated code. The comment is placed in front of the
method call “blockingReceive()”.

This approach assumes that there are no other messages sent to the agent than
the awaited one. If this is not the case then the model must be redesigned so that
the behaviour MessageHandler is waiting for incoming messages.

An INTERNAL ACTION is implemented as comment in the code of the
“action()” method of the behaviour. Text of the comment is set to the description
of the action label.

An OBJECT is implemented in JADE as a class definition. The class is used
as “wrapper” around the actual object and is serving as communication interface
between an agent and the actual object. Since in our agent model we do not
define the internal structure of the object, the generated class includes only the
description of the interface and has no actual code. The member functions of the
class are the ones corresponding to the manipulations in the visual model. The
rules are the following:

– The name of the object class is the name of the object in the visual model.
– The new class is located in the same package with the agent that is

manipulating the object. Note that the package contains the agent class, it’s
behaviour classes and classes for objects manipulated by the agent. Design of
systems where several agents manipulate the same object should be avoided.

A MANIPULATION is mapped in JADE code as part of the behaviour code
of the agent and as a function of the object class. The rules are the following:

– A public member function is added to the object class.
– Name of the function is taken from the name of the manipulation in the

visual model.
– The return type is implemented according to the return type and the return

variable defined in the visual model:

19

– If no return type and variable are specified then the function is
defined as “void”.

– If return type is specified then a new instance of the type is returned.
The type should support constructor with no parameters.

– If a return variable is specified but the type is omitted then String is
assumed.

– Parameters of the manipulation function are implemented using the type
specified in the model. If the type of a parameter is not specified then String is
assumed.

Implementation of the manipulation in the agent’s behaviour code is straight-
forward:

– Define an instance of the class of the manipulated object in the “action()”
method of the behaviour code. Use names o1, o2, o3, etc., for naming of the
instance variable.

– If the member function requires parameters then these must be defined. If
parameter type is not specified then String is assumed. A comment is added to the
generated code to remind programmer to assign correct values to the variables.

– Call the member function. If the function returns a value then the value is
assigned to a new variable of the corresponding type. If the return type is omitted
then String is assumed.

Mapping Summary

The mapping of a diagram onto the actual program code is broken down to the
mapping of different agents, objects, messages, and other components included in
the diagrams. We have covered all the defined components already and Table 1
summarizes the mapping rules of visual components on the diagrams onto the
source code.

Table 1. Summary of the mapping of diagram components onto the source code

Diagram component Generated source code components

Diagram Title Used as “conversation ID” of ACL messages

Agent Agent package;
Agent class;
MessageHandler behaviour class

Object Object class

Lifeline Not implemented in code

Behaviour Behaviour class

Message Part of behaviour code of the sender agent;
Part of behaviour code of the receiver agent;
Part of MessageHandler behaviour code of the receiver agent

Manipulation Part of behaviour code of the agent;
Member function of the object class

Internal action Comment in the source code of the behaviour method Action()

20

5. CONCLUSIONS

The paper shows that agent technologies have been developed so far that it is

possible to define methods supporting agent-based software development from
the analysis through design to the final implementation. The methods introduced
above have been tested on a case study of a library lending system. The case
study includes the description of the business rules applicable in the lending
system, the visual model based on the rules, and the software code based on the
model. It is possible to visually follow the exchange of messages between agents
in the JADE runtime environment and to see that the pattern matches with the
one presented in the visual model.

Our work is based on a limited list of concepts and on sequence diagrams
only. Investigations are needed to add more concepts to introduce their notation
and implementation rules into the program code. In addition, more visual
diagrams from UML and also from elsewhere should be adjusted for representing
the business rules in agent-based systems.

REFERENCES

 1. Odell, J., Parunak, H., and Bauer, B. Representing agent interaction protocols in UML. In Proc.
AAAI Agents 2000 Conference. Barcelona. Forthcoming.

 2. Bauer, B. Extending UML for the Specification of Agent Interaction Protocols. Foundation for
Intelligent Physical Agents, Munich, 1999.

 3. Nwana, H. S. Software agents: An overview. Knowl. Eng. Rev., 1996, 11, 205–244.
 4. Wagner, G. Foundations of Knowledge Systems with Applications to Databases and Agents.

Kluwer, Boston, 1998.
 5. Finin, T., et al. Draft Specification of the KQML Agent-Communication Language. The

DARPA Knowledge Sharing Initiative External Interfaces Working Group, Baltimore,
1993.

 6. JADE Online Documentation. University of Parma, CSELT S.p.A, 2000.
http://sharon.cselt.it/projects/jade/.

 7. FIPA 97 Specification, Version 2.0, Part 2, Agent Communication Language, Foundation for
Intelligent Physical Agents, Geneva, 1998. http://www.fipa.org.

 8. Taveter, K. and Tamm, B. A new approach to the modeling, design, and implementation of
business information systems. In Proc. Fourth IEEE International Baltic Workshop on DB
and IS (BalticDB&IS’2000). Vilnius. Forthcoming.

 9. UML Summary, version 1.1. Rational Software Corporation, Santa Clara, 1997.
http://www.rational.com/UML.

10. Hay, D. and Healy, K. A. GUIDE Business Rules Project, Final Report. The Business Rules
Group, Seattle, 1997. http://businessrulesgroup.org/first_paper/br01c0.htm.

11. UML Notation Guide, version 1.1. Rational Software Corporation, Santa Clara, 1997.
http://www.rational.com/UML.

21

AGENDIPÕHISE TARKVARA DISAIN

Margus OJA, Boris TAMM ja Kuldar TAVETER

Artiklis on püütud siduda agendipõhise tarkvara väljatöötamise etappe ühtseks

tervikuks, sealjuures on defineeritud agendipõhise tarkvara komponendid, nende
visuaalne notatsioon ja reeglid komponentide realiseerimiseks programmikoodis.
Agendipõhise tarkvara komponentide defineerimisel on lähtutud mitmete autorite
töödest. Komponentide tähistuse väljatöötamisel on kasutatud universaalset
modelleerimiskeelt UML. Programmikoodi näited on koostatud Java keeles
JADE arenduskeskkonnas. On esitatud kolmetasandilise tarkvara (agenditasand,
objektitasand ja binaarne tasand) arenduse mudel. Defineeritud komponendid ja
visuaalne mudel kuuluvad agenditasandile, genereeritud Java kood objekti-
tasandile. Kolmandat, binaarset tasandit artiklis ei käsitleta. Agendipõhise tark-
vara kasutamine on õigustatud kindlalt piiritletud tingimustes, kui tarkvara
koosneb autonoomsetest komponentidest.

