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Abstract. Wind speed dynamics measured during one year with an automatic wind station installed

on the Harilaid Islet is analysed from the point of view of the wind energy utilization. Special
attention is paid to the dynamic behaviour of wind in the speed range of 8-12 ms™'. It is shown that

increasingof the hub height over the standard (30—40 m) adds to the annual energy yield about 1%

per every added meter.
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1. INTRODUCTION

Wind speeds in Estonia have been investigated for a long time and the results

have been generalized in [']. Unfortunately, all these investigations are related

with the wind statics (assessment of the average speed, capacity and direction

during a long interval — month, season, year, etc.). Due to the reasons explained
in [*], the wind speed dynamics is important in view of wind energy utilization

when wind electricity generators operate connected to the common power grid
[*®]. The dynamic behaviour of the wind can be assessed only by continuous

measurements and therefore measurements must be automatically controlled that

was not possible until recently.
In the present article, the data measured in the WICOM-C automatic wind

station installed on the Harilaid Islet (23°2.7"E, 58°56.4"N) is analysed.
Measurements have been made every 10th second, but the data have been stored

in the database averaged for 10 min intervals, what is much more frequent than

the 3 h intervals used in the earlier hydrometeorological observations [*] and thus

for the first time in Estonia they give information about the wind dynamics.
Actually, automatic measurements with the same time interval have been made

earlier at Kootsaare (the island of Hiilumaa) and on the Vormsi, Osmussaare, and
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Prangli islands ['], but the results of wind measurements have not been published
and wind dynamics has not been analysed. A peculiarity of the measurements on

Harilaid is also that for the first time an annual database from the autumn

equinox of 1997 till the same day in 1998 has been compiled. The background of

the present analysis is related to the implementation of wind as a power source

and therefore consideration of wind direction is not significant, but the process

dynamics in a certain range of instantaneous speeds v and wind speed behaviour

at different heights H are of interest. Wind measurements on Harilaid have

been made at three different heights: 20, 35, and 50 m K 3

2. CHARACTERISTIC FEATURES OF A WIND POWER

GENERATOR

The capacity of a wind power generator in the range of v, <v<vg, 18

P= f(v?). The capacity at the wind speed below the minimum value v_, and

above its limit value v,, endangering the wind generator, is zero. For the safety
of the equipment, the wind turbine is stopped at v>v,. In the range of

stabilization, v, <v<v,, the capacity (for an ideal regulator) is equal to the

installed nominal value P, =const. The minimum speed by starting a wind

generator is in the present work taken as 4 ms™' and v, =l2 ms™". The curve of

the utilized relative capacity P*= P(v)/P,,, is given in Fig. 1.

It is evident that wind velocities v<B ms™ are not of interest since the

obtained capacity and the generated amount of energy are very low. In the

Moonsund Archipelago maximum measured wind speed is 25 ms™. The wind

speed in the range of 12<v <25 ms™ increases significantly the potential wind

energy reserve, but not the real capacity which is limited by respective
regulation. Only bigger wind turbines of certain companies (e.g., Zond Z-40)
have been designed for wind speeds up to 40 ms™'. In our work we have focused

Fig. 1. Relative capacity ofa wind generator P as a function of the average wind speed v.
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on the wind speeds in the range of 8 <v <l2 ms™ since there a change in the

wind speed for 30% may result in the 90% variation of the capacity of a wind

power generator.

3. THE AVERAGED PARAMETERS OF THE WINDS ON

HARILAID

In Table 1 the annual average values on three heights for the medium (v, ),

maximum (v, ), minimum (v_; ), and absolute maximum [max(vmax)], wind

speed are shown. In the given year the absolute minimum speed is zero at all

three heights. Dependence of the average medium wind speed on the height is

approximately described as v, =v,(H,/H,)"" [*] where v, and v, are average

speed values at the heights H, and H,, respectively.

In Table 1 the “real” annual normalized energy E (normalized to the energy

at the hub height 35 m) is defined as

,
h=52560

2
h=52560

3

E'= Y P(h,H)/ > P'(h,3s), (1)
h=l h=l

where /4 is the number of the 10 minute interval and the relative capacity is

P* — Pnom (v(h) — Vmin )3/(vstab — Vmin )3 . (2)

The weak dependence of E on the hub height in the case of regulation in the

limits v, <v(h)<v,, puts up a question whether it is reasonable in the

offshore conditions to build a wind turbine higher than it is required for

providing the safe rotation of blades.

Height, m

Ymed 7.11 7.55 7.98

. 12.73 13.32 13.82

Vesin 2.58 2.79 3.08

max(Vy,,) 1998 Feb 28 26.0 28.1 29.6

Annual normalized energy E 0.85 1 1.15

Wind energy efficiency nE 0.31 0.26 0.22

Relative yield W’ 0.23 0.27 031

Table 1. Wind characteristics on Harilaid from 1997 Sept 21 to 1998 Sept21
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The wind energy efficiency 7 is the ratio of energy yield with capacity

regulation to the corresponding energy yield without it (the natural wind energy

resource)

h=52650
3 3z Faom (V* (h) — Vmin)” Vstab — Ymin)

— -h=l

T ©)

zPFaom (V() — Vmin) /(vstab — Vmin)
h=]

where

v¥(h)=v(h) if v(h)<vg,,

v¥*(h) =vg, if v(h)>v,,.

Here 77 has a low value (17 <<l). It shows that operating directly with the

meteorological database is not correct.

Another item of interest is the relative yield W*, which is the ratio of the

annual normalized energy to the amount of energy which could be generated in

the wind power plant by its operation at the nominal load

% 4

h=52560

W' —E / SR|
h=l

(4)

Table 1 as well as the wind rose (Fig. 2) show static data. We can see that the

highest relative capacity is obtained with the SW winds and the lowest with the

Fig. 2. Dependence of the relative frequency f4, relative capacity Py, and average wind speed

v 4 on the wind azimuth at H =35 m.
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E winds. Dynamics of the average wind speeds during the year is shown in

Fig. 3. The wind speed of the considered year with the local maximum in

February is evidently not typical for Estonia since it is known that the highest
winds in Tallinn prevail in November, December, and January [P].

4. DYNAMIC WIND PARAMETERS ON HARILAID

Further we shall consider wind parameters independent from its direction.

The wind speed contains a periodic and a random component. The periodic

change is given in Fig. 4 where the vertical lines show the amplitude of the daily

average wind speed on “windy” days, which have a local maximum relative to

the preceding and following days, at the height of 35 m. Thus the growing and

decreasing trend of the average wind speed are both screened out. Table 2 shows

frequency of the number of days during which the wind speed was either

growing or declining. Periods seen in Fig. 4 are irregular and so are the values of

the average speed.

Figure 5 shows the number of days when at least once a day within one hour

the generated capacity varies for a certain amount. The number of cases when

the capacity varies for the shown amount is actually bigger since for variable

Fig. 3. Weekly average wind speed v;5 on Harilaid Islet at H = 35 m.

Period in days '
2 3 4 5 6

Freguency of occurrence 27 29 23 13 5

Table 2. Frequency of the periods with the monotonous change of the wind speed
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wind its speed can change rapidly several times a day (Fig. 6). At the wind speed
over 12 ms”', the regulator restrains the nominal capacity while for the speed
below 4 ms™" it is zero.

In Fig. 7 the wind speeds measured on Harilaid Islet and at the Tahkuna wind

power plant (22°31"E, 59°04’ N) at the same height for three days are shown.
The first two days (June 15th and 16th) were characterized by changing winds

while the wind on the last day was rather stable (the day with the highest energy

yield in the whole year).
Despite the highly changeable winds on Harilaid, in the critical range of

speeds, during the first two days rapid change of the wind speed on Harilaid and

Tahkuna never coincided. Examples of the timely shift of the wind speeds in

geographically separated monitoring sites can also be found in the literature ['°].

Fig. 4. “Windy” days from 1997 Sept to 1998 Sept.

Fig. 5. Number ofdays with rapid capacity variation AP (during an hour).
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Thus, the common negative impact on the power system of the geographically
distributed wind power plants does not need to be dramatic, but the problem of

power unstability correlation is worth of a separate investigation.
Figure8 describes the situation when inversion occurs and the wind is

stronger at lower heights due to turbulence. Hence the “linear” dependence of

wind speed from the hub height is valid for average but not for the instantaneous

Fig. 6. Variation of the wind speed v, deviation of the wind azimuth AA from the average azimuth

160 deg, and relative capacity P" from 0900 to 1500 h ona typical day.

Fig. 7. Comparison of wind speeds on the Harilaid Islet and Tahkuna Peninsula in June 1998
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5. CONCLUSIONS

The following thumb rule can be formulated: one meter of additional height
in the conventional range of the hub heights gives 1% of additional generated
energy yield for a wind power station in offshore conditions. In the West-

Estonian Archipelago the SW winds carry the highest energy. Their energy

reserve ils 2-3 times higher than that of the E or NE winds. Therefore the

Estonian western coastal area, which is mostly covered with forest at the east

side, the conditions should be most suitable for the development of wind based

energy generation. The fluctuation of instantaneous capacity due to the highly
varying wind speed in the range of B<v<l2 ms™ should remain under

scrupulous consideration from the point of view of the energy system.
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VÄINAMERE TUULTE DÜNAAMIKA

Teolan TOMSON jaMaire HANSEN

On esitatud Harilaiule paigaldatud automaatse tuulemodtejaama aastapikkuse
andmerea analiiiisi tulemused. Uudsuseks on tuule diinaamiliste parameetrite
kasitlemine ldhtudes tuule energeetilisest kasutamisest. Oluliseks tuleb pidada
tuule diinaamilist kditumist kiirusintervallis 8~12 m s™'. Tuulejujaama kdrguse
suurendamine iile standardkorguse (30-40 m) annab iga meetri kohta elektri

aastatoodangus voitu 1%.
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