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Abstract. Single-pass and multi-pass versions of a solar domestic hot water system are compared
for some conventional flat-plate collectors. It is shown that the single-pass version has higher
productivity and is to be preferred.
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A solar domestic hot water system ['] (Fig. 1) can be designed as a single- or

multi-pass one. The flow rate for a single-pass system is assured by control of

the circulation pump or by free thermosiphon circulation in the system with high
hydraulic head in such a way that the heat carrier (water) is heated to the final

temperature 60 °C immediately. In the multi-pass system the flow rate is higher
and the water is heated for some degrees only, for instance for 10 K. In order to

reach the required final temperature of 60 °C, water has to circulate the system
several (in our example five) times. A benefit of the first modification is the

possibility to produce water with required temperature, but in small quantities.
Another benefit of the first modification, that has not been highlighted in the

literature, is higher specific yield from the same solar collector area.

The simulation has been made for an Estonian statistical summer day with

solar irradiation /(h) and ambient temperature model 7,(4), described in [*]. The

collector output temperature 7,(h) = 60°C has been considered to be constant

and the storage tank to be stratified, approximated by a plug-flow model. It

means that hot water fills the storage tank from above, and, separated by a

temperature step, cold water leaves the tank from below.
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How T,(h) = 60°C = const is provided in the conditions of changing /(h), is

outside the scope of the present work. One possibility is automatic control of the

circulation pump; also the thermosiphon system can keep nearly constant output

temperature. The analysis below is made considering the heat transfercoefficient

from the collector plate to the heat carrier to be constant.

Numerical simulation is carried out for three hypothetical flat plate collectors

(FPC), each with a realistic combination of its parameters, with the EXCEL-5

worksheet. It is assumed that FPCI is an “inexpensive” collector with moderate

thermal insulation; FPC2 is an “expensive” unit with advanced thermal

insulation, while FPCO is a “conventional” collector. In the simulation model the

collectors are tilted for 45° and oriented to south. The performance of a collector

1s described by the initial value of its efficiency 1, and the coefficient of overall

thermal losses Uy

1) FPCI: 1o = 0.85, U, = 0.01 kWmK™

2) FPCO: 1o = 0.75, U, = 0.007 kWmK"

3) FPC2: 1 = 0.65, U, = 0.004 kWm K"’
The operation period of the system is from 08.00 till 16.00 (when the angle

between the beam radiation and the normal of the collector surface remains

below 60°), and the time is divided into intervals of five minutes. In simulation,

the water mass heated during each interval for AT€ {50,10 K} is calculated. In

the single-pass system the input water temperature is constant 7;(h) = 10°C, but

in the multi-pass system it is increased with a step of 10 K for each following

pass, Ti(h) € {lO, 20, 30, 40, 50°C}. The input temperature changes each time

when 1/5 of the whole daily water mass has been warmed up by 10 K. Thus, the

simulation model for the multi-pass system is iterative.

Fig. 1. Simplified layout of a solar domestic hot water system.
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Results of the simulation are presented in Table 1, from where follows:

1) for all FPCs, the single-pass performance provides higher yield;
2) the difference in the productivity decreases when insulation of the FPC

is improved;
3) multi-pass system is more sensitive to the FPC quality.
It may be recommended to design home-made solar collectors single-pass as

it is difficult to predict their quality. Up to now it is not clear if an artificial

resistance (valve) in the hydraulic loop will warrant equal to serpentine piping
limitation of the flow rate.
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ÜHE- JA MITMELÄBIVOOLSE HELIO-SOOJAVEESUSTEEMI
VÕRDLUS

Teolan TOMSON

On vorreldud iihe- ja mitmeldbivoolse heliosiisteemi tootlikkust tavalise

plaatkollektori puhul ja ndidatud, et siisteemi itheldbivoolne reziim on tootlikum.

Table 1. Calculated daily energy, kWh/m?

Collector [— FPCI = ] FPC0 | = FPC2

Multi-pass (m-p) A7= 10K 1.36 1.66 1.91

Single-pass (s-p) AT =50 K 1.94 1.97 2.01

Ratio m-p vs s-p 0.70 0.84 0.95
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