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Abstract. If the manufacturing defects of power equipment are not taken into account, the

condition of the metal operating under creep may be reliably characterized only by structural

changes. To guarantee reliable operation of a power plant component, it is important to locate

critical areas and monitor and conduct metal testing at a proper time. The system presented here,

allows us to estimate stress distribution in a component, to find computational assessment of the

cumulated damage, to determine when and where it is necessary to cut off microsamples or take

replicas. Finally, the real condition of the metal may be assessed on the basis of metallographic
research and a reasonable 3-R (run, repair, replacement) decision can be made on further use of the

component.
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1. INTRODUCTION

The power equipment developed and operated in 1960-1970 was designed
for the term of about 100 000 hours. Wall thickness of power plant components
and the permitted operational pressure were designed for the same lifetime. In

spite of the fact that many power plant components have already operated for

200 000-250 000 hours and their design life has expired, they may still be in a

satisfactory condition [']. The reasons lie in their exploitation at lowered steam

temperature, timely inspection of the metal condition, repairs, and partial
replacements. Today such power plant components require continuous

inspection.
If the defects of manufacturing and repair are not taken into account, the

reliability of a component is defined by the changes in the structure of the metal

which are mainly caused by creep. Ultrasonic testing and superficial defecto-

scopy as well as monitoring of the creep rate by measuring the deflection of the

https://doi.org/10.3176/eng.1999.1.05

https://doi.org/10.3176/eng.1999.1.05


65

component cannot reveal structural damages before cracks occur. In practice,
structural damages can only be detected by metallographic research. We

consider the condition of the metal structure, mainly the level of cumulated

changes in the microstructure, the most authentic criterion for the estimation of

metal serviceability in the given circumstances. Knowing the relationship
between the level of cumulated changes and life consumption, it is possible to

take decisions on more extensive inspection, repair or replacement of a

component at a particular time.

2. COMPUTATION OFLIFE CONSUMPTION

The standard document [*], currently effective for metal testing of power

equipment components in Estonian power plants, provides for checking of

external and internal surfaces of thick-wall elements by non-destructive testing
methods and microstructural analysis using microsamples cut off from the

surface of the element investigated. The testing procedure is illustrated in Fig. 1.

Before a repaired or replaced component is put into operation, the required
documentation concerning all the elements must be available.

According to the standard document [’], new power plant equipment should

be equipped with an automatic monitoring system of the parameters of operation
and a database containing its history.

First estimation of stresses in the components of a steam pipe and in

collectors is made after 80-90% of the design life has elapsed.

Computer programs RAMPA or TOTU, based on [*], are used to estimate

stresses in steam pipe elements (straight parts and elbows), and COLLECTOR is

intended to estimate stresses in the collectors. On the basis of the stresses found,
the program assesses the cumulated life consumption (so-called computational

creep and fatigue damage) for the most heavily loaded elements. Program
RESKU takes into account also the number of the start-ups and shut-downs of

the installation. Similar assessments are made for headers. Further actions

depend on the level of the damage. For example, with computational creep and

fatigue damage (life consumption) D.> 0.9, for highly loaded elbows further

investigation must be conducted with the help of the program ELBOW to

provide stress distribution along the elbow and on the perimeter. Only on the

basis of these estimations it is possible to locate precisely areas for cutting
microsamples or taking replicas. We suggest that metallographic specimens
provide a better means than replicas for determining microstructural damage.

Microsamples (as a rule, from stretched zones of an elbow, where maximal

stresses are usually located) with thickness about 0.2-0.3 mm and diameter

about 10-12 mm are cut off by a mechanical cutting-tool designed and

manufactured at Tallinn Technical University. The benefit of the tool is that cold

work hardening and overheating of metal and microsamples are excluded.
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The amount of cut-off microsamples required depends on the value of

computational creep and fatigue damage for the particular element as well as on

the stress level. For example, according to [*], for the elbow of a steam pipe with

the outside diameter 133 mm and D, < 0.95, the number of microsamples is

prescribed as follows: 1) G = Oy, three samples; ¢ =0.90,,, two samples;
0 = 0.750

~
One sample.

If the computational damage of the elbow is 0.8-0.9, the number of samples
is lower.

3. TESTING OF THE REAL LIFE CONSUMPTION

The microstructure of a metallographic specimen prepared by using a cut-off

microsample is, as a rule, investigated under an optical microscope. This analysis
may be conducted directly or by using a portrait of the specimen produced by
traditional photographing or by computer scanning. In the latter case, computer

programs will allow for the execution of some integrated transformations of the

portrait as alignment of light exposure, increase of contrast, and smoothing of

high-frequency noise.

In addition, the formal analysis of the microstructure can be conducted on the

basis of gray tone gradation to determine the following quantitative character-

istics: average size of grain, density of distribution and average size of carbides, the

amount of average size of pores and specific porosity, division of the micro-

structure into two phases on the tone level (can be applied to establish the pearlitic
component of the structure). The qualitative and quantitative parameters of the

metal structure give the possibility to establish the degree of its actual damage.
In the absence of pores, the degree of microstructural damage of alloys

12X1IM® and 15X1M1® is defined by the scale of structures [*], and when pores
are present, it is defined by the Berezina scale [°]. This scale subdivides the creep-

damaged microstructures of pearlitic alloys into five degrees as follows.

I.One to two pores in the field of view of the microscope under

magnification 800, not more than in two samples from the 20 investigated ones.

The value of the volumetric share of pores may be assessed here as f<0.15%
and the real life consumption D, < 0.65.

2. Three or more pores in the field of view, or less than three in the single
field with three or more fields, in which pores are located: f=0.15-0.20%,
D,=0.65-0.74.

3. A chain of pores at least in one field of view. In this case f= 0.20-0.30%,

D,=0.74-0.81.
4. A chain of pores and their association into microcracks within a grain:

f=0.30-0.40%, D,= 0.81-0.87.

5. Critical damage and microcracks are united into macrocracks: f=
0.40-0.80%, D,= 0.87-0.96.
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Preliminary assessments of the value of the volumetric share of pores are

based on the computational life consumption, using Berezina’s empirical
equation:

f 2=
fcr

exp(a—+/1-D,)

where f,, is critical value of the volumetric share of pores (for pearlitic alloys
for=2%) and a is a coefficient depending on the structure of the alloy; a = 4.4 for

ferrite-sorbite and ferrite-carbide structures, and a =4.8 for the structure with

temperedbainite.

4. ASSESSMENT OF THE SERVICEABILITY OF A COMPONENT

The serviceability of a power plant component and the admitted operation
expectancy until the following metal testing is established on the basis of the

results of the structural analysis as follows.

1. If pores are not observed, the component is established as suitable on the

basis of conformity of its qualitative and quantitative characteristics to the alloy
standards [°].

2. If pores are observed, the residual life factor k. should be estimated on the

basis of microstructural damage that allows the assessment of residual life by
using the following equation:

Tres= T+ kfl:a

where 7T, is residual life in hours (until the following testing, repair or

replacement of a component), T is the current operational time in hours.

For the alloy 12X1M®, values of residual life factors, depending on the

degree of the actual cumulated damage [], are as follows:

Degree of damage 1 2 3 4 5

Residual life factor, &, 0.3 0.15 0.03 0 0

Residual life factor k. is based on the following assumption. When the life

consumption D =1/[t], ([t] is admitted life) exceeds 0.85, further process of

creep damage accumulation becomes unpredictable, and further operation of the

component becomes unreliable and inexpedient. It means that k; may be

estimated on the basis of actual cumulated damage by using the following
empirical equation:

k = 1.
D
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ELEKTRIJAAMA SEADMETE RESSURSIKULU HINDAMINE

Harri TALLERMO ja Ivan KLEVTSOV

Roomavuse tingimustes téotava metalli seisundit iseloomustavad kdige pare-
mini tema struktuuris toimunud muutused. Seadme elemendi todkindluse tagami-
seks on oluline kriitiliste kohtade viljaselgitamine ning nende õigeaegne
kontroll. Artiklis esitatud siisteem voimaldab hinnata elemendi pingejaotust,
médrata kindlaks kuhjunud kahjustust ning leida, millal ja kus on vajalik
kontrollimiseks vélja 10igata katsekehi voi votta jdljendeid. Struktuuriuuringu
baasil saab hinnata metalli tegelikku olukorda ja teha pShjendatud nn. 3-R (run,

repair, replacement) otsus elemendi edasise kasutamise kohta.
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