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Abstract. The problem of thermally developing pulsating flow in a tube with constant heat flux at

wall was studied with a simple mathematical model. Intervals of the frequency at which the Nusselt

number either increases or decreases, are determined. Some experimental results are given. The

phenomenon ofcutting off the peaks of temperature pulsating curves is explained.
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1. INTRODUCTION

The heat transfer problem of pulsating flow in tubes and ducts has been

considered in several publications ['~']. The interest in this problem is due to the

possible applications, mainly in industry, by increasing heat exchange efficiency,
and in biomechanics.

The heat transfer problem for developing pulsating laminar flow in duct was

studied in [']. The slug-flow assumption was used. The dependence of heat

transfer on pulsation frequency at uniform wall temperature and constant heat

flux at the wall was demonstrated. The same problem with finite difference

method was considered in [*]. The importance of the entry region for heat

transfer and for its development was indicated.

Results of numerical studies of heat transfer characteristics of a pulsating flow

in the pipe at uniform temperature at the wall are given in [*]. Complete laminar

boundary-layer equations were solved. It was found that in the downstream fully
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established region the Nusselt number either increases or decreases in

comparison with the steady-flow value, depending on the frequency. The same

problem in a channel was numerically studied in [*]. The change in the Nusselt

number due to pulsation in the entrance region was pronounced.
The problem of pulsating laminar flow in a tubewith constant heat flux at the

wall, when temqperature becomes a linear function of downstream direction, was

considered in []. A range of moderate values of the frequency is indicated when

the Nusselt number increases. Earlier the same problem for turbulent flow was

dealt with in [°]. The problem with sinusoidal wall temperature distribution has

also been studied ['].
In the present paper we investigate the problem of thermally developing

pulsating flow with constant heat flux at the tube wall by means of a simple
theoretical model. Some experimental results are given to prove the usefulness of

the latter.

2. THEORETICAL ANALYSIS

The problem of pulsating flow with constant heat flux at the tube wall is

governed by the energy equation

a_T+ua_T=L ü.*.la—T (2 ])
ot dx pe,ldr* rõr|

;

Here T is the temperature, u is the fluid velocity in axial direction, c,, k, p are

specific heat, conductivity and density of the fluid, respectively, x, r are axial and

radial coordinates within the tube, and ¢ is time.

We consider the pulsating flow when sufficient time has passed after the start

of the pulsation, when the quasi-equilibrium has been obtained. Then the

boundary conditions can be written as

T(o,r,l)=T,, (2.2)

oT
g(x,0,7)=0, (2.3)

aT
kE'(x’ ry,t)=q,, = const. (2.4)

Here 7|, is the uniform temperature of the fluid when entering the region where

the heat flux at the tube wall ¢, is given, and 7, is the radius of the tube.

Let us introduce following notations:

9=_Ti, oyl (2.5)
q,7 !k U



43

X r tk
¢ = ———3 t W Moty P et (2.6)

s sPy (2.7)- :

where uy is constant reference velocity, u is viscosity, and Pr, Re are Prandtl and

Reynolds numbers, respectively.
Using Egs. (2.5)—(2.7), the energy equation (2.1) and boundary conditions

(2.2)—(2.4) take nondimensional form

2

§_Q_+vB_6=B_9+lB_9’ (2.8)
Ot 88 odn* nN

and

d0

ä(ž* 1 t)=l, (2.9)

6(0,n,7)=0, (2.10)

00

ä(š' 0,7)=0. (2.11)

Let us assume that the velocity of flow v at every moment of time is constant

in any cross section of the tube, and equals to the average flow velocity. That is,

v=y,(1+ € sinor), (2.12)

where v, is the average flow velocity, € is a pulsation parameter, and @ is the

frequency.
Inserting Eq. (2.12) into Eq. (2.8), we obtain

00 . 00 09’60 106

s+VM(l+ESlan)£=W+E_B_E' (2.13)

Multiplying Eq. (2.13) by 7, integrating over interval (0, 1) and using the

boundary condition (2.9), we obtain

g—zwm (I+¢ sinan)g—z= 2, (2.14)

where

1

6=2 J'ondn. (2.15)
0
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Here 6 is the mean temperature which equals to the bulk temperature since the

flow velocity in cross section of the tube is constant.

The general solution of the first order linear partial differential equation (2.14)
1S

flvl,w,)=o, (2.16)

where f is an arbitrary function, and

v, (š,r,ä)= const, W, (ž,r,s)= const (2.17)

forms a solution of the ordinary differential equations

———d—š„—=dr=ldä (2.18)
Va (I+esinor) 2

From Egs. (2.16)—(2.18) follows

=0-27,v (2.19)
€

v,=€-v, (T-——-COS arr)@

and

f[õ -21,E-v,[r —žcosan' fl=O. (2.20)

Using now the boundary condition (2.10), we obtain

E=ly,s+2n) cosw 72|- cosar| (2.21)
2 0 2

From Eq. (2.21) the mean temperature 6 is determined implicitly as a

function of the variables £ and 7.

Next we use the method of perturbation to derive the explicit form of the

function 6. Let us suppose that € is a small parameter and the solution of Eq.
(2.21) can be written as

0(£,7,€)=0(&,7)+€6,(&,7)+€°0, (€, 7)+... (2.22)

Substituting Eq. (2.22) into Eq. (2.21) and comparing the terms with equal
powers of g we obtain
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5-%„„5„ =O, (2.23)

šäl +i[cosw(T—%]—cos an} =O, (2.24)
@

0, +sin w[r -%) -6, =O, (2.25)

From Egs. (2.22)—(2.25) follows

8= 2{i + —l—|:— E+e'" sina)[r — —š—]] . I:cosa)[r — i]— cosan‘J}. (2.26)
V 0 V Vo

Using the notation

£ = Ä, (2.27)
vm

Eq. (2.26) can be written as

6=0,+0,, (2.28)

where

B,=2¢,
. (2.29)

ÕP = 260—8[—1 +Esinw(r—š*)]-[cosw(”c—š*)—cosan].
Figure 1 shows the variation of the oscillatory mean temperature 6, with

time 7 for different co-ordinates £". Notice that there is a difference in the form of

the curves for different values of the co-ordinate &'.
To determine the effect of pulsation on the rate of heat transfer at the point £*,

we express the local Nusselt number as [*°]

Nu=
2

*
—

*
,

<9 (š ])> — <9( & )>
(2.30)

where the angle brackets “< >” indicate the temporal average over the complete
cycle of pulsation:
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<9 (€.l) > = äzyzaé (&, 7.l)dr, (2.31)

<§(§*) > = E;rl/_wz:‘f%(é*’ 7)dr. (2.32)

The corresponding local Nusselt number in a steady flow is given as

2
-

es(š 71)—es(š )
( )

The fractional change in the Nusselt number

W eT (2.34)
Nu,

can be used as a measure of the effect of pulsation on the heat transfer at point

& 1.
From Egs. (2.30)—(2.34) we find

(2.35)
1 .”=—z——_—l

Nuo<õ„>

Fig. 1. Variation of the mean temperature 6
p

with time 7 for different co-ordinates E* by € = 0.2,

w=sl-&*=o2n; 2-6%=037;3-6%=05m;4-E*=o6m.



47

Substituting Eq. (2.29) into Eq. (2.32), we obtain

(6,)= 825—‘;“’5—— (2.36)

therefore

2 :
*

19:.—8—N;1°—81m?€—...7 (2.37)
200 — £°Nu,, sinwé

The local fractional change in the Nusselt number ¢ has order of magnitude

e’ and depends on the frequency @. If the value of @™ is in the interval

2nm< wE<(2n+ 1) (n=0,1,2,..), then ¥ is positive and the Nusselt

number increases, but if 2n+ l)7 < a)ž'< 2(n + 1)7, then Y is negative and

the Nusselt number decreases. By increasing the frequency wW the absolute value

of ¥ decreases.

Figure 2 shows the variation of fractional change in the Nusselt number with

frequency w at different co-ordinates & .

From Eq. (2.37) it follows that the fractional change in the Nusselt number v

is a periodic function, with period 27/®, of co-ordinate E”. Let us consider the

average value of ¥ over the period

,š d
.

Fig. 2. Variation of the fractional change in the Nusselt number ¢ with frequency w at different
*

co-ordinates Š .
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. £*Nu,
Integrating Eq. (2.37) with

7<l, we obtain
)

1
84Nu02
_;,a)_z— <<l, Eq. (2.39) can be approximately written as

)= .šffNLozo
=

(2.40)

From Eq. (2.40) follows that on average ¢ lis positive, although for some

values of & it has negative values. That is, the Nusselt number by pulsating flow

increases on average. The average value {l9} increases by increasing the Nusselt

number in steady flow Nu, and by decreasing the frequency .

3. EXPERIMENTAL ANALYSIS

The available experimental results about heat transfer in pulsating flow are

inconclusive and contradictory. First of all, to compare the obtained results with

the theoretical analysis, we find the equation for computing the wall temperature.
Let us assume that the following equality holds

208 (3.1)9o’

and that the change of the temperature in a cross section of the tube is quasi-
stationary. Then from Egs. (2.8), (2.12), (2.26), and (2.27) we obtain

9°o 1006 .—Ä +>— -FIE a)|, (3.2)
St

(¢°,7)

where

Fle",7)=2(+¢ sinwr)
><[l—esina)(l'—š*)—s2 cosZa)(r—š*)+B2 cosa)(r—š*)cosan'].

(3.3)

Integration of the Eq. (3.2) with boundary condition (2.11) yields
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0= F(E 1) +o,(€ 7). G4
where 6, is the temperature in the centre of the tube.

If we express 6, through the mean temperature 8, we obtain

9_3.,.[_”2 1 1

7—š] F(š , ). (3.5)

Accordingly, the temperature at the wall of the tube (77 = 1) can be written as

0, =s+%F(§*,l). (3.6)

Experiments were made at Satakunta Polytechnic, Pori. Measurements were

conducted on an experimenta! setup which gave us the possibility to measure

integral parameters of the flow. The principal scheme of the set-up is given in

Fig. 3.

The setup was connected to the laboratory water supply system and was

during the experiments under the network pressure, approximately equal to 4

bars. The pulsating flow was generated by a solenoid valve, which was controlled

by PC. Flow rate and pressure measurements were recorded with the frequency
400 Hz per channel. The scanning rate of the IR camera was 50 Hz.

The pipe surface in the IR camera measurement area was heated by a 500 W

heater. This makes convective heat transfer processes, taking place inside of the

flow, well trackable from outside measurement of the pipe wall temperature by
the IR camera.

Fig. 3. Experimental setup: 1 - pressure regulator valve; 2 —pressure vessel; 3 —copper pipe
(D;, = 19.6 mm, wall thickness 1.2 mm, length 4.1 m); 4— IR camera; 5 - VCR equipment; 6 —

Asco posiflow proportional solenoid valve; 7 —Krohne IFC 080 compact magnetic inductive

flowmeter; 8 — Druck Limited pressure transmitter PTX 1400 (o—4 bar); 9 — air release valve; 10 —

heater 500 W.
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The IR camera used for the measurements was Inframetrics Model 740 IR

imaging radiometer with wavelength 8-12 um. Spatial resolution of the camera

is 194 elements horizontally (50% SFR) and 240 vertically. Horizontal scanning
rate is 7812 Hz and vertical 50 Hz. By using this kind of camera it is possible to

detect frequencies up to 50 Hz. Line scans of the temperature were recorded with

usual VCR equipment for further analysis.
The temperature changes of the pipe wall due to the cooling effect of the

flowing water are relatively low. In order to bring out the convective heat transfer

effects in the flow more precisely, the measurement range of the IR camera was

set to 2°C, the smallest possible measurement range of the camera.

Some results of these experiments are shown in Fig. 4. Figure 5 shows

corresponding wall temperatures calculated from Eq. (3.6). Good qualitative
agreement is observed between experimental and theoretical results. From these

results we can also conclude that the phenomenon of cutting off the peaks in

temperature pulsating curves is due to the developing character of the

temperature in the downstreamdirection.

Fig. 4. Temperature vs. time: (a) f=0.13 Hz; (b) f=0.33 Hz; (c) f=0.43 Hz
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4. CONCLUSIONS

In the present paper the thermally developing pulsatile flow in a tube with

constant heat flux at the wall is studied with a simple mathematical model. In the
tube the slug-flow assumption is used and the mean temperature is investigated.
The intervals of frequencies, where the local Nusselt number either increases or

decreases, are determined. Experimental results are given, which in general prove
the usefulness of this simple model. The phenomenon of cutting off the peaks of

temperature pulsating curves is explained.
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SOOJUSÜLEKANNE TERMILISELT ARENEVAS PIIRKONNAS

PULSEERUVAL VOOLAMISEL TORUS

Leo AINOLA, Tiit KOPPEL ja Matti LAHDENIEMI

Lihtsa matemaatilise mudeli abil on kisitletud soojusiilekannet termiliselt

arenevas piirkonnas pulseeruval voolamisel torus, kui toru vélisseinale on raken-

datud muutumatu soojuskoormus. Mudeli koostamisel on ldhtutud eeldusest, et

voolamine on iihtlase kiirusjaotusega, ning vaadeldud on keskmist temperatuuri.
Arvutustega on miératud voolamise sageduse piirkonnad, kus lokaalne Nusselti

arv kas suureneb voi viheneb. Artiklis esitatud eksperimentaalsed tulemused

kinnitavad kasutatud teoreetilise mudeli sobivust. To6s on selgitatud ka

temperatuuri muutuste puhul esinevat temperatuuri pulseerumise kovera

maksimumi loikamise efekti.
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