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Abstract. Diamond-like carbon coatings on NdFeß magnets for wear and corrosion protection are

described. The coatings, fabricated by arc plasma chemical vapour deposition and the pulsed laser

deposition method, were found to be applicable to protect NdFeß from mechanical impact, but

failed to protect against hydrogen chlorine and fluorine attack due to defects in the coatings.
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1. INTRODUCTION

Diamond-like carbon (DLC) is a versatile engineering material with

increasing areas of application. DLC coatings and films are hard, chemically
inert, optically transparent, and wear-resistant. They have low friction. Studies of

DLC coating use in cutting instruments, turbine components, prostheses, and

electronic circuits are conducted worldwide ['].
The aim of this study was to evaluate the DLC coatings on NdFeß magnets.

NdFeß compounds are high-performance hard permanent magnet (PM)
materials. There is evidence that they will replace other PM materials in most
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applications [*]. Unfortunately, the material consisting of reactive Fe and Nd,

composed of several phases, is liable to corrosion [**].
The most common way to prevent or at least suppress corrosion is to treat or

coat the magnet as a whole. The processes used for NdFeß magnets include:

— glazing by CO, [*], Nd: YAG [°], or excimer ['] laser light;
— phosphating, chromating, or fluorinating in H;PO,4, H,CrO,, or HF [8"'0];
— coating with metals (usually by galvanoplating): Zn, Ni, and Sn [>*]; Au

[!']; Al, Cu, and Cd ['?]; ZnCo [’]; Nd [**]; Nd-Ti bilayer ['*]; Nd-base film ["*];
— coating by TiN ['*] and epoxy resin ['].
In micromechanical devices, besides corrosion resistance, the wear resistance

of magnets is important (e.g., [''] a linear motor with sliding or rotating magnet
on silicon surface). In this case, DLC would be suitable for protective coatings
on the magnet il

In this work, the corrosion resistance of DLC/NdFeß structure against
hydrogen chlorine and fluorine attack was evaluated. Because these gases are

highly reactive, it appears attractive to use NdFeß magnets in the couplings of

gas circulation fans of excimer lasers, where these gases are present.

2. EXPERIMENT

As substrates, sintered NdFeß pellets (NEOREM 410 a of Outokumpu
Magnets Oy, Finland), were used, composed of Nd 31 p-%, Dy 1.5 p-%, B

1.15 p-%, Al 0.25 p-%, Fe-balance. Prior to coating, substrates were ground,
polished, and cleaned in acetone in an ultrasonic bath for 10 min.

DLC coatings were manufacturedby two methods:

1) pulsed arc discharge deposition from methane (for details, see [*n;
2) laser ablation deposition (LAD) from graphite target. Here, the light from

an ArF excimer laser (wavelength 193 nm, pulse length 15 ns, and pulse
frequency 10 Hz) was focused on the rotating pellet of pressure-compacted
graphite powder. The energy density of laser light on the target was between

4-5 J/cm®, the substrate was placed at the distance of 30 mm from the target
perpendicular to the laser plume.

LAD film thickness was in the range of 100-300 nm and that of arc discharge
deposited films was 500 nm, determined by Dektak’ST Surface Profiler (force
0.1 mN). On some substrates, a Ti sublayer was formed by evaporation
deposition prior to DLC coating. The films examined by optical microscopy
were characterized by the Raman spectroscopy. Mechanical properties of the

coatings were evaluated by indenter tests, using the Vickers hardness tester.

For corrosion tests, rectangular pieces with dimensions 5 X 5 mm were cut off

from the coated pellets. The uncoated facets were protected from aggressive
environment by fluorocarbon paint LF-32LN. Three corrosion tests were

performed:
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1) holding the samples in 5% F, in He at 2 bar for one week;

2) holding the samples in 3% wet HCI (in concentrated HCI vapours) for a

week;

3) recording the potentiodynamic polarization curves in 0.1 M HCI

(experiment described in 2.

3. RESULTS

Figure 1 presents the micrograph of the surface of a DLC-coated NdFeß

sample. The material contains many pores with dimensions up to 10 um. After

polishing and cleaning there remain particles on the surface, with dimensions of

few micrometers, which are difficult to remove due to the magnetic attraction

forces. The physical characterization was performed on the defectless areas.

In the Raman spectra (Fig. 2), both sp’ band at 1300 cm™ and sp® band at

1550 cm™ can be distinguished. Considering that the Raman spectrometry is

about 50 times more sensitive to sp> bonding [*'], the DLC material, to a high
degree, consists of sp’ bonded carbon, which provides its high protective
properties.

Fig. 1. Surface morphology of a diamond-like carbon-coated sintered NdFeß magnet.
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The adhesion and mechanical properties of the coatings were characterized

by the indenter test. The coatings without buffer layer had poor adhesion and

were delaminated from the surface at the lightest touch with the indenter tip. The

presence of titan sublayer (about 0.1 wm) improved the adhesion significantly
(Fig. 3). The fracture character is typical of hard and well-adherent coating on a

softer substrate [**]. The coating breaks gradually in the course of indenter

penetration, which results in many parallel cracks in the crater walls. The

irregularities in the crack positions and spacing are due to the inhomogeneity of

the substrate and pores in it.

In all corrosion tests, halogen penetration under coating was observed. In wet

HCI, the coatings delaminated from the substrate totally in a few days. In the

case of fluorine test, the structure remained unchanged, nevertheless, the coating
delaminated from the surface after storage in the normal atmosphere for some

months. Obviously, halogen reaches NdFeß through defects, pores, and cracks in

the coating.
The delamination of the coating may be explained in the following way. The

chemical reaction of halogen with neodymium and iron yields metal halogenides,
which form complexes with water in the presence of water vapour. These

complexes have larger volume than the starting metal compound, thus causing
the delamination of the coating.

Fig. 2. Raman spectra of diamond-like carbon coatings, fabricated by arc discharge deposition; laser

deposition; excitation 514 nm.
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The presence of the reaction between halogen and NdFeß was confirmed also

by potentiodynamic polarization measurements (Fig. 4). These curves indicate

that the coating has little effect on the corrosion behaviour of NdFeß. The

50 mV shift of the corrosion potential may be attributed to the presence of Ti on

the substrate. Since DLC is known to be inert to HCI, but reactive to NdFeß,
corrosion is assumed to occur through defects in the coating.

The penetration of fluorine into DLC was examined by the Auger electron

spectroscopy (Fig. 5). The profiles were taken from a smooth area without

defects. According to the diagram, fluor does not penetrate deeper than 60 nm

into the DLC (based on the fact that at the Auger profiling, the DLC layer of

500 nm thickness could not be milled through in 160 min), and certainly it

cannot reach NdFeß in the case of continuous coating.
Reaction of fluorine with diamond was investigated in [*’]. It was shown that

fluor chemisorbs on diamond surface and forms a very stable and inert C-F

surface layer. In DLC, which is a more disordered material, gas can penetrate
deeper.

The slow rate of Ar ion milling (less than 3 nm/min) is another proof of high

strength of the DLC coating, thus suggesting its usefulness in ion-plasma
devices.

Fig. 3. Indentation crater on the surface of the diamond-like carbon-coated NdFeß magnet (with Ti

sublayer); applied force — 2 N.
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Fig. 4. Potentiodynamic polarization curves of bare NdFeß (a); diamond-like carbon-coated

NdFeß (b). Electrolyte — 0.1 M HCI; scanning rate — 1 mV/s; reference electrode— saturated

calomel electrode; counter electrode — platinum.

Fig. 5. Auger electron spectroscopy profiles of major elements in the diamond-like carbon coating
exposed to 5% fluorine for a week. Ar* ion energy — 3 kV, spot size — 10 um, ion current — 0.4 mA.
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4. CONCLUSIONS

DLC coatings on NdFeß have been investigated for the first time. Coatings
with Ti underlayer proved to be hard and rather adherent, therefore they could be

used for protecting NdFeß from mechanical impact. However, the coatings
failed to protect the material against fluorine and HCI attack because of defects

in the coatings, although halogen penetration (in the case of fluorine) into DLC

was much less than the coating thickness. Our suggestion is to planarize the

substrateprior to coating, for example, by laser glazing [*], which affects only a

rather shallow surface layer.
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TEEMANDILAADSEST SUSINIKUST PINDED NdFeß-MAGNETITEL

Arvi KRUUSING Vitali PODGURSKI Andres OSVETjaMerja HERRANEN

On uuritud teemandilaadsest siisinikust pinnete suutlikkust kaitsta NdFeß

magnetmaterjali korrosiooni ja mehaaniliste mojutuste eest. Keemilise aur-

sadestusega vOi lasersadestusega valmistatud pinnete kaitseomadusi HCI ja F,
vastu on vaadeldud mikroskoopia, potentsiodiinaamilise polaromeetria ja Auger'
elektronide spektromeetria meetodil. Osutus, et pinded takistasid halogeeni
sissetungi, kuid ei kaitsnud magnetit pinde defektide tottu. Pinnete nake alusega
oli titaanvahekihi kasutamise puhul hea.
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