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Abstract. In this paper, the transfer matrix has been used for formulating finite element

continuity and equilibrium equations. In particular, the joint and support continuity and

equilibrium equations are considered. Examples of a solution with the boundary element

method for a statically indeterminate frame are described.
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1. INTRODUCTION

Finite element structural analysis is based on the displacement (stiffness)

method, on the force(flexibility) method and on the boundary elementmethod. The

forcemethod has been applied in [~B] and the boundary elementmethod in [?~l3].
In the boundary element method, compatibility equations and equilibrium equations
for finite elements and joint points (boundary element is a point) are considered. In

the boundary element method, the field matrix is evaluated from the fundamental

solution of an infinite beam [2]. It is also possible to evaluate the field matrix from

the fundamental solution of a semi-infinite beam. In this case, the field matrix is

called a transfer matrix [* 14-17].
By means of the field (transfer) matrix, the forces and the displacements

at one end of the finite element are transferred to the opposite end. There

are three compatibility equations and three equilibrium equations for a beam-

column finite element. For the structure, the joint and support continuity and

equilibrium equations with the finite element continuity and equilibrium equations
are described. These equations give a large unsymmetrical system of algebraic
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equations. To solve the system, it can be maintained in its original size or can be

condensed [ 7> 18]. The method described can be called EST method (element,

system and transfer).

2. ELEMENTFORCES AND DEFORMATIONS

Figure 1 shows the beam finite element. Thereference frame for the element is

the local coordinate system z, y, z. The X, Y, Z denote the global reference system.
The longitudinal axis z is the union of geometric centroids of the section. The

element displacements and forces in the local coordinate system are expressed by
the vectors d, v, R, s, and z.

a=[v], v=[2] a=[&) ==&] ==[}
The transformation matrices ® and T are

=e Il eMI a8

3. ELEMENT COMPATIBILITY AND EQUILIBRIUM EQUATIONS

For statically determinate structures, we consider only the equilibrium equations
%]š = —Ozx, % 5%% = —g». From the transfermatrix method ['*—l6], we obtain

the finite element eguilibrium eguation

° ]Sr-e — U;::le+€ =Bg-1 (1)

Fig. 1. Local and global coordinates.
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where U* is the transfer matrix for forces

-1 0 0

U*= | 0 -1 o|, (2)
0 —z -1

and the load vectors is

S

(z—a z)o &

.

:

>F(—„;iP%
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£

T—aF;) - ll

/ 21;% 0!
— Zqzl(z T!") , (3)

=

T—ap —

OM, e) — }:F@_lfl-t o Zngz_ggz_f"t
here

0, when (z—ap,) <0
@)(x-an)+={ T —ap,, Wwhen (:E—aF,)ZO ,

and ap,, aq,, aF,, aq,, and a) are coordinates of the forces in the local coordinate

system (Fig. 2).

For statically indeterminate structures, we consider the compatibility and

equilibrium equations

Zr-e — U:z::Lzl+c = zg;.—.La (5)

where U is the transfer matrix

U= [ U;)u %I*2 ] (6)

Fig. 2. Element loads.
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with

10 0 7 0 0

0 x 3 x z?
Un=]ol -z

|, Up= §ET, —Oa T3ET,
00 1 0 —22 I3ET, ET,

and the load vector z° is

=% |
with

(z—ar) (z—a )2
— F;„—t — .e

.
(-"7—021\:4)2 = (z—š)%; 22

(-’B—aq)ft
uw'=| YMyt+X gy YX G e

: (8)
-

a 2 13

-OM 5S gr
The first three equations in the system of equations (5) are compatibility equations
and the latter three are equilibrium equations. The transfer matrix U and the load

vector z° can be produced from the universal solution (9) for a semi-infinite beam

(py =— %%,)')

(z — aM)2
Elyw = (Elyw), — (Elypy), o + ) :My_2|_+ +

(1 — ap)? (z — ag)’
+ž Fz—3! + ž :qz——4! . (9)

The beam element displacements and forces will be determined by the transfer

matrix

2, = U 2 + 23. (10)

4. SYSTEM OF ELEMENTS

For a statically indeterminate system, the finite elements compatibility and

equilibrium equations (5), the displacement continuity equations of the joint and

support, and the joint and support equilibrium equations were considered. The

number of equations m is

m = 6ne + ms + My, (11)
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where

My = Ma + MA, (12)

and

(13)ms = mj + My,

where 7., number of finite elements; m;, number of equilibrium equations for the

joint and support points; m;, number of prescribed boundary forces for elements

(hinges); mg, number of compatibility equations for the joint points and ma,

number of prescribed boundary displacements for the supports. The number of

unknowns n is

n = 12ne + ne, (14)

where n. is the number of reaction forces.

4.1. Example

Figure 3 shows a statically indeterminate structure

Transformation matrices 7 and 75 of the beams () and @) are

1.0 0
Tl=[olo], (15)

001

Fig. 3. Joint and support points equilibrium
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0 -1 0

=lll 0 01. (16)
0 0 1

The equilibrium equations of the beams () and (2) are

FID 1 0 00 45 0

F |+[olo]]| r =-[ B*4 ] (17)
(1) 1 1 + 42

M 0 4 I]| p0) 8l x 4

FD 1.0.:07[ 2 0

FO [+lolo]|| FD |=-| -5
1. (18)

2 2
—M 04.1]) m 5%2

The compatibility equations (19) and (20) for the beam elements (), 2) are

. 1

zo*u%i%
i 0 *uD 1.000 0712
io*ng)) +| 0 —1 4 0 —l%f —je "F(‘f)yA =

. 449 to
io *Py

0 0 —1 05 :1 F"("l“)
)

M)
0

*43i
=| i |»> (19

—8x4%1,
621

to* u(2)

¢
wfgs

5
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yL
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o
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(20

*419

)

where i, = 0.966 -10Pa - m 3 and i 4 = 1.407- 108Pa - m.
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The bending stiffnesses of the beam elements are: 7; = Ežx = 10

i = E—žl =io (EI, = 3.864 MPa:- m?) and the extension stiffness of the beam

element iy = £4 (EA = 562.8 MPa -m?).

The equilibrium equations (21), (22), and (23) for the joint and the support

points and|3 |(Fig. 3b) (m; =9) in the global coordinates are:

1007[ FY 1 0 07[c0 0

oloo|[FY [+]o -1 0 S T=101" @
1

— 1o.ol]] M 0 0 -I]] c 0

10 01[ FY 0-1 01| F® 7

010||FY [+[l 0 of|FD |=]o]|, (2
1 200 1 MZSL) 0 0 1 M!SA) 0

0 2 Mmooy 1 0 . W T c 0 0
1.0 . o]]) 2D +] 0 -1 0 /[0 ]=-|o]|. @

2
— 300 .I]| u 0 0 -I]| 65 0

The prescribed displacements of the supports| 1 |and|3 |(Fig. 4b) in the global
coordinates are (ma = 6):

1001/« 0

010 w |=]o], (24)
001 (pfl) 0

yA

Fig. 4. Schematic of the jointand support points.
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0-1 071/ v 0

[1 0 0] w 2 =[o]. (25)
001 (pfšš 0

yL

Thecompatibility equation for the joint point Lä] (Fig. 4b) (m4y =3) in the global
coordinates 1s:

1007][ ¥ 0-1 01/[ v 0

01 o|w?|[-]2 0 of|wd]|=]o]. (26)

001y0 0 1 ) 0
(pyL QoyA

The number of unknowns is n = 12n, + n, =l2 - 2 + 6 = 30. The number of

eguations in BEM is m = 6n. + ms +my =6 -2+9+9 = 30.
The system of eguations (17)426) was solved by Crotty [l°] block solver with

3 x 3 blocks. Figure 5 demonstrates the results.

5. CONCLUSIONS

The transfer matrix has been used in the boundary element method for

formulation of the beam finite elements. In particular, it suits for formulation of the

thin-walled beam elements and of the beam finite elements in the 2nd order theory.

Fig. 5. The forces and the displacements
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ÜLEKANDEMAATRIKS JA RAJAELEMENTIDE MEETOD

Andres LAHE

On vaadeldud iilekandemaatriksi kasutamist varraste tasakaalu- ja pidevus-
vorrandite koostamisel ning kasitletud sGlmpunktide tasakaalu- ja pidevusvorran-
dite koostamist. On toodud nidide staatiliselt médéramatu raami arvutamise kohta

rajaclementide meetodiga.
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